EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
7th Edition
ISBN: 8220100663659
Author: ULABY
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 6P
The electric field of a planewave propagating in a lossless, nonmagnetic, dielectric material with ϵr = 2.56 is given by
Determine:
- (a) f, up, λ, k, and η.
- (b) The magnetic field H.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
EM waves in a non-magnetic, lossless dielectric are given as follows:
E(2.1)= 307 sin (or -z)â,
H(2.r)=0.5 sin(or-:)â,
Find the dielectric constant and the angular frequency.
Magnetic field intensity of a propagating wave in free space is given by
H=0.3 cos(4*10t- 2y) ax VIm
the plot of H versus y at time, t= T/8
0.3-
Ask me anything.
Electromagnetics
Given field V= 4y^2z+(3x^2/y). If E = gradV. Determine Ex at P(-6,-5,-1)
Chapter 7 Solutions
EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
Ch. 7.2 - What is a uniform plane wave? Describe its...Ch. 7.2 - Since E and H are governed by wave equations of...Ch. 7.2 - If a TEM wave is traveling in the y direction, can...Ch. 7.2 - Prob. 1ECh. 7.2 - Prob. 2ECh. 7.2 - If the magnetic field phasor of a plane wave...Ch. 7.2 - Repeat Exercise 7-3 for a magnetic field given by...Ch. 7.3 - An elliptically polarized wave is characterized by...Ch. 7.3 - Prob. 5CQCh. 7.3 - The electric field of a plane wave is given by...
Ch. 7.4 - If the electric field phasor of a TEM wave is...Ch. 7.4 - The constitutive parameters of copper are = 0 = 4...Ch. 7.4 - Prob. 8ECh. 7.4 - For a wave traveling in a medium with a skin depth...Ch. 7.5 - Prob. 6CQCh. 7.5 - In a good conductor, does the phase of H lead or...Ch. 7.5 - Prob. 8CQCh. 7.5 - Is a conducting medium dispersive or...Ch. 7.5 - Compare the flow of current through a wire in the...Ch. 7.6 - Convert the following values of the power ratio G...Ch. 7.6 - Find the voltage ratio g corresponding to the...Ch. 7 - The magnetic field of a wave propagating through a...Ch. 7 - Prob. 2PCh. 7 - The electric field phasor of a uniform plane wave...Ch. 7 - The electric field of a plane wave propagating in...Ch. 7 - A wave radiated by a source in air is incident...Ch. 7 - The electric field of a planewave propagating in a...Ch. 7 - The magnetic field of a plane wave propagating in...Ch. 7 - A 60 MHz plane wave traveling in the x direction...Ch. 7 - Prob. 9PCh. 7 - For a wave characterized by the electric field...Ch. 7 - Prob. 11PCh. 7 - The magnetic field of a uniform plane wave...Ch. 7 - A linearly polarized plane wave of the form...Ch. 7 - The electric field of an elliptically polarized...Ch. 7 - Compare the polarization states of each of the...Ch. 7 - Plot the locus of E(0, t) for a plane wave with...Ch. 7 - Prob. 17PCh. 7 - Prob. 18PCh. 7 - In a medium characterized by r = 9, r = 1, and =...Ch. 7 - Prob. 20PCh. 7 - Prob. 21PCh. 7 - Prob. 22PCh. 7 - The skin depth of a certain nonmagnetic conducting...Ch. 7 - Prob. 24PCh. 7 - The electric field of a plane wave propagating in...Ch. 7 - The magnetic field of a plane wave propagating in...Ch. 7 - At 2 GHz, the conductivity of meat is on the order...Ch. 7 - In a nonmagnetic, lossy, dielectric medium, a 300...Ch. 7 - A rectangular copper block is 30 cm in height...Ch. 7 - Prob. 30PCh. 7 - The inner and outer conductors of a coaxial cable...Ch. 7 - Prob. 32PCh. 7 - The magnetic field of a plane wave traveling in...Ch. 7 - A wave traveling in a nonmagnetic medium with r =...Ch. 7 - The electric-field phasor of a uniform plane wave...Ch. 7 - Prob. 36PCh. 7 - A wave traveling in a lossless, nonmagnetic medium...Ch. 7 - At microwave frequencies, the power density...Ch. 7 - Consider the imaginary rectangular box shown in...Ch. 7 - Repeat Problem 7.39 for a wave traveling in a...Ch. 7 - Given a wave with E=x E0 cos(t kz): (a) Calculate...Ch. 7 - Prob. 42P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 10) If the magnetic field component of a plane wave in a lossless dielectric is H = 50 sin (2n x 10° t- 6x) a: mA/m, what will be the wave velocity? a) 1.047 x 10° m/s b) 1.257 x 10 m/s c) 2.50 x 10° m/s d) 3 x 10° m/s Q3: Determine the polarization state of a plane wave E-fields below: a) E (z.t) = -4ã,eut-ke) + j4āye/lut-kz2), b) E(z.t) = 0.56a̟e(ut+kz+) - 0.56ã,e (ut+kz-)arrow_forwardThe magnetic field component of a plane wave in a lossless dielectric is H = 30 sin (27× 10°t – 5z) ax mA/m g. Find the displacement current density.arrow_forwardHomework Helparrow_forward
- The magnetic field of a wave propagating through a certain nonmagnetic material in the positive y direction has an amplitude of 30 mA/m and a frequency of 0 Hz . If the wave is polarized on the positive z direction and its wavelength is 12.6 meter, find the relative permittivity of the material. Assume the initial phase is 0. Select one: O a. 2.25 O b. 1.5 O C. 1.2 O d. 2.9 O e. 1 O f. 0arrow_forwardThe magnetic field of a wave propagating through a certain nonmagnetic material in the positive y direction has an amplitude of 30 mA/m and a frequency of 10 Hz . If the wave is polarized on the positive z direction and its wavelength is 12.6 meter, find the relative permittivity of the material. Assume the initial phase is 0. Select one: O a. 2.25 Ob. 1.5 Oc 12 d. 2.9 e. 1 f.0 magnetic field of a wve ga5a0d ena.ces n nonmadneti.cmaterian the DOsitive y directionarrow_forwardThe wavelength of a sinusoidal plane electromagnetic wave propagating in +y direction in vacuum is 6 x 10- m. If the amplitude of the electric field component of the wave is (9 V/m)E, what is the magnitude and the direction of the magnetic field component?arrow_forward
- Handwrite and step by step solutionsarrow_forward4. The electric field intensity of a wave propagating through a certain nonmagnetic material is given by E = 2sin(3t-2x) (V/m). Find the direction of the wave, the phase velocity, the wavelength in the material, the relative permittivity of the material, and the magnetic field intensity.arrow_forwardOnly use problem 2 as reference to solve main problem which is problem 5 as explained. Thank you!!!arrow_forward
- The magnetic field of a wave propagating through a certain nonmagnetic material is given by: H = x̂ 69cos(10x108t – 15z) (mA/m) Find wavelength (λ) in the material and relative permittivity (εr) of the material.arrow_forwardQuestion 5 A plane wave propagate through a lossless medium with &r=3 and ur=1, the magnitude of the magnetic field of this wave is give by: H(z,t) = 4 cos(4x 107 t - Bz) A/m The velocity of this wave is 1.73 x 108 m/s 3x 108 m/s 0.23 x 108 m/s 2.18 x 108 m/sarrow_forwardThe magnetic field phasor of a wave traveling in a medium with intrinsic impedance n = 120 2 is given by H = (2a -3a,) e S The associated electric field phasor is: -j3z 1 NOTE: You may use H = a × E or E = -na, x H, where a is a unit vector in the direction of the wave propagation. n E = S mA/m -240a,) -360ax -j3z = (-0.36a -0.24a,) e V S E E = = (-240a - 360a) e e -j3z -j3z V V E,= (-0.24a -0.36a,) e-j³² V -j3z е Sarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Demos: Dielectric breakdown; Author: Caltech's Feynman Lecture Hall;https://www.youtube.com/watch?v=2YrHh1ikefI;License: Standard Youtube License