
EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
7th Edition
ISBN: 8220100663659
Author: ULABY
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 9P
To determine
The expression for electric field
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
i need helppp please
solve and show work
2) (15pts) In a PAM baseband digital communication system, an M-ary system has a
channel bandwidth of 2 KHz. The channel introduces 10dB of losses and AWGN noise
with a power spectral density of 1*10-6 W/Hz. The application requires a bit rate of 4.8
Kbps and BER of less than 10^-6. Estimate the require transmit power.
Chapter 7 Solutions
EBK FUNDAMENTALS OF APPLIED ELECTROMAGN
Ch. 7.2 - What is a uniform plane wave? Describe its...Ch. 7.2 - Since E and H are governed by wave equations of...Ch. 7.2 - If a TEM wave is traveling in the y direction, can...Ch. 7.2 - Prob. 1ECh. 7.2 - Prob. 2ECh. 7.2 - If the magnetic field phasor of a plane wave...Ch. 7.2 - Repeat Exercise 7-3 for a magnetic field given by...Ch. 7.3 - An elliptically polarized wave is characterized by...Ch. 7.3 - Prob. 5CQCh. 7.3 - The electric field of a plane wave is given by...
Ch. 7.4 - If the electric field phasor of a TEM wave is...Ch. 7.4 - The constitutive parameters of copper are = 0 = 4...Ch. 7.4 - Prob. 8ECh. 7.4 - For a wave traveling in a medium with a skin depth...Ch. 7.5 - Prob. 6CQCh. 7.5 - In a good conductor, does the phase of H lead or...Ch. 7.5 - Prob. 8CQCh. 7.5 - Is a conducting medium dispersive or...Ch. 7.5 - Compare the flow of current through a wire in the...Ch. 7.6 - Convert the following values of the power ratio G...Ch. 7.6 - Find the voltage ratio g corresponding to the...Ch. 7 - The magnetic field of a wave propagating through a...Ch. 7 - Prob. 2PCh. 7 - The electric field phasor of a uniform plane wave...Ch. 7 - The electric field of a plane wave propagating in...Ch. 7 - A wave radiated by a source in air is incident...Ch. 7 - The electric field of a planewave propagating in a...Ch. 7 - The magnetic field of a plane wave propagating in...Ch. 7 - A 60 MHz plane wave traveling in the x direction...Ch. 7 - Prob. 9PCh. 7 - For a wave characterized by the electric field...Ch. 7 - Prob. 11PCh. 7 - The magnetic field of a uniform plane wave...Ch. 7 - A linearly polarized plane wave of the form...Ch. 7 - The electric field of an elliptically polarized...Ch. 7 - Compare the polarization states of each of the...Ch. 7 - Plot the locus of E(0, t) for a plane wave with...Ch. 7 - Prob. 17PCh. 7 - Prob. 18PCh. 7 - In a medium characterized by r = 9, r = 1, and =...Ch. 7 - Prob. 20PCh. 7 - Prob. 21PCh. 7 - Prob. 22PCh. 7 - The skin depth of a certain nonmagnetic conducting...Ch. 7 - Prob. 24PCh. 7 - The electric field of a plane wave propagating in...Ch. 7 - The magnetic field of a plane wave propagating in...Ch. 7 - At 2 GHz, the conductivity of meat is on the order...Ch. 7 - In a nonmagnetic, lossy, dielectric medium, a 300...Ch. 7 - A rectangular copper block is 30 cm in height...Ch. 7 - Prob. 30PCh. 7 - The inner and outer conductors of a coaxial cable...Ch. 7 - Prob. 32PCh. 7 - The magnetic field of a plane wave traveling in...Ch. 7 - A wave traveling in a nonmagnetic medium with r =...Ch. 7 - The electric-field phasor of a uniform plane wave...Ch. 7 - Prob. 36PCh. 7 - A wave traveling in a lossless, nonmagnetic medium...Ch. 7 - At microwave frequencies, the power density...Ch. 7 - Consider the imaginary rectangular box shown in...Ch. 7 - Repeat Problem 7.39 for a wave traveling in a...Ch. 7 - Given a wave with E=x E0 cos(t kz): (a) Calculate...Ch. 7 - Prob. 42P
Knowledge Booster
Similar questions
- i need helppp pleasearrow_forward1) (2pts) If you know you have a bad clock (lots of jitter) and you are not bandwidth constrained, you should: (Circle the correct answer) a) Set the roll off factor to zero b) Set the roll off factor to ½ c) Set the roll off factor to one 2) (2pts) Short answer: Why do we use M-ary modulation? 3) (4 pts) Short answer: The application engineer comes to your desk and says that the error rate is too high and must be reduced for the application to function correctly. The system is battery operated. What do you tell them is the trade- off?arrow_forwardi need helppp pleasearrow_forward
- 5) (20 pts) You are testing a system that has pulse shape shown below for Logic 1 and Logic 0. You are connecting the transmitter to an oscilloscope which is set up to display the resulting eye-diagram of the system. Sketch what you would expect to see on the oscilloscope for an ideal system (an ideal system is noiseless and jitter free) Logic 1 3 volts Time 0 Ть Logic 0 0 Ть Time -2 voltsarrow_forward4. (20 pts) You are given a channel with the following impulse response. Determine the set of equations that will be used to determine the coefficients of a Zero-Forcing Linear Equalizer. DO NOT SOLVE FOR THE COEFFICIENTS. Just show the set of equation that would be used to solved the coefficients. 0 m≤-31 -0.33 m = -2 .25 m = -1 h(mb) = 1 m = 0 -0.45 m = 1 0.5 m = 2 0 m≥3arrow_forwardI need help understanding part B. See attached photo.arrow_forward
- i need helppp pleasearrow_forward3) (30pts) An application requires a bit rate of 18.2 Kbps and an error rate of less than 104. The channel has a noise power spectral density of 10-8 W/Hz. The channel attenuates the power in the signal by 5 dB. The system uses binary PAM baseband digital communication system with the minimum required bandwidth and a roll-off factor of 0.319. a) (10 pts) What is the estimated minimum required signal power (Pt) at the transmitter?arrow_forwardi need helppp pleasearrow_forward
- i need helppp pleasearrow_forwardi need helppp pleasearrow_forward1a) (5pts) Suppose X is a Gaussian random variable with a mean of 2 and a variance of 9. What is the probability X is greater than 2. 1b) (5pts) Suppose X is a Gaussian random variable with a mean of 2 and a variance of 9. Using the Q-function, determine Prob{-4-2} Leave your answer in terms of the Q-function; do not evaluate it.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,

Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning

Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education

Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education

Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON

Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,