Identify each of the following unbalanced reaction equations as belonging to one or more of the following categories: precipitation, acid−base, or oxidation−reduction.
msp;
msp;
msp;
msp;
msp;
msp;
msp;
msp;
msp;
Trending nowThis is a popular solution!
Chapter 7 Solutions
EBK INTRODUCTORY CHEMISTRY
- Write balanced net ionic equations for the following reactions in acid solution. (a) Liquid hydrazine reacts with an aqueous solution of sodium bromate. Nitrogen gas and bromide ions are formed. (b) Solid phosphorus (P4) reacts with an aqueous solution of nitrate to form nitrogen oxide gas and dihydrogen phosphate (H2PO4-) ions. (c) Aqueous solutions of potassium sulfite and potassium permanganate react. Sulfate and manganese(II) ions are formed.arrow_forwardThe iron content of hemoglobin is determined by destroying the hemoglobin molecule and producing small water-soluble ions and molecules. The iron in the aqueous solution is reduced to iron(II) ion and then titrated against potassium permanganate. In the titration, iron(ll) is oxidized to iron(III) and permanganate is reduced to manganese(II) ion. A 5.00-g sample of hemoglobin requires 32.3 mL of a 0.002100 M solution of potassium permanganate. The reaction with permanganate ion is MnO4(aq)+8H+(aq)+5Fe2+(aq)Mn2+(aq)+5Fe3+(aq)+4H2O What is the mass percent of iron in hemoglobin?arrow_forward1. Sometimes a reaction can fall in more than one category. Into what category (or categories) does the reaction of Ba(OH)2(aq) + H+PO4(aq) fit? acid-base and oxidation-reduction oxidation-reduction acid-base and precipitation precipitationarrow_forward
- Assign an oxidation number to the underlined atom in each ion or molecule. (a) Fe2O3, (b) H2SO4, (C) CO32- (C) NO2+arrow_forwardBalance each of the following equations, and classify them as precipitation, acid-base, gas-forming, or oxidation-reduction reactions. Show states for reactants and products (s, , g, aq). (a) CuCl2 + H2S CuS + HCl (b) H3PO4 + KOH H2O + K3PO4 (c) Ca +HBr H2 + CaBr2 (d) MgC12 + NaOH Mg(OH)2 + NaClarrow_forwardTriiodide ions are generated in solution by the following (unbalanced) reaction in acidic solution: IO3(aq) + I(aq) I3(aq) Triiodide ion concentration is determined by titration with a sodium thiosulfate (Na2S2O3) solution. The products are iodide ion and tetrathionate ion (S4O6). a. Balance the equation for the reaction of IO3 with I ions. b. A sample of 0.6013 g of potassium iodate was dissolved in water. Hydrochloric acid and solid potassium iodide were then added. What is the minimum mass of solid KI and the minimum volume of 3.00 M HQ required to convert all of the IO3 ions to I ions? c. Write and balance the equation for the reaction of S2O32 with I3 in acidic solution. d. A 25.00-mL sample of a 0.0100 M solution of KIO. is reacted with an excess of KI. It requires 32.04 mL of Na2S2O3 solution to titrate the I3 ions present. What is the molarity of the Na2S2O3 solution? e. How would you prepare 500.0 mL of the KIO3 solution in part d using solid KIO3?arrow_forward
- Describe in words how you would prepare pure crystalline AgCl and NaNO3 from solid AgNO3 and solid NaCl.arrow_forwardThe molarity of iodine in solution can be determined by titration with arsenious acid, H3AsO4. The unbalanced equation for the reaction is H3AsO3(aq)+I2(aq)+H2O2 I(aq)+H3AsO4(aq)+2 H+(aq)A 243-mL solution of aqueous iodine is prepared by dissolving iodine crystals in water. A fifty-mL portion of the solution requires 15.42 mL of 0.134 M H3AsO3 for complete reaction. What is the molarity of the solution? How many grams of iodine were added to the solution?arrow_forwardGold can be dissolved from gold-bearing rock by treating the rock with sodium cyanide in the presence of oxygen. 4 Au(s) + 8 NaCN(aq) + O2(g) + 2 H2O() 4 NaAu(CN)2(aq) + 4 NaOH(aq) (a) Name the oxidizing and reducing agents in this reaction. What has been oxidized, and what has been reduced? (b) If you have exactly one metric ton (1 metric ton = 1000 kg) of gold-bearing rock, what volume of 0.075 M NaCN, in liters, do you need to extract the gold if the rock is 0.019% gold?arrow_forward
- The amount of oxygen, O2, dissolved in a water sample at 25 C can be determined by titration. The first step is to add solutions of MnSO4 and NaOH to the water to convert the dissolved oxygen to MnO2. A solution of H2SO4 and KI is then added to convert the MnO2 to Mn2+, and the iodide ion is converted to I2. The I2 is then titrated with standardized Na2S2O3. (a) Balance the equation for the reaction of Mn2+ ions with O2 in basic solution. (b) Balance the equation for the reaction of MnO2 with I in acid solution. (c) Balance the equation for the reaction of S2O32 with I2. (d) Calculate the amount of O2 in 25.0 mL of water if the titration requires 2.45 mL of 0.0112 M Na2S2O3 solution.arrow_forwardThe blood alcohol (C2H5OH) level can be determined by titrating a sample of blood plasma with an acidic potassium di-chromate solution, resulting in the production of Cr3+ (aq) and carbon dioxide. The reaction can be monitored because the dichromate ion (Cr2O72) is orange in solution, and the Cr3+ ion is green. The balanced equations is 16H+(aq) + 2Cr2O72(aq) + C2H5OH(aq) 4Cr4+(aq) + 2CO2(g) + 11H2O(l) This reaction is an oxidationreduction reaction. What species is reduced, and what species is oxidized? How many electrons are transferred in the balanced equation above?arrow_forwardFour metals, A, B, C, and D, exhibit the following properties: (a) Only A and C react with 1.0 M hydrochloric acid to give H2(g). (b) When C is added to solutions of the ions of the other metals, metallic B, D, and A are formed. (c) Metal D reduces Bn+ to give metallic B and Dn+. Based on this information, arrange the four metals in order of increasing ability to act as reducing agents.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning