bartleby

Concept explainers

Question
Book Icon
Chapter 7, Problem 7.97EP

(a)

Interpretation Introduction

Interpretation:

The dominant types of intermolecular forces present in H2 liquid state sample has to be determined.

Concept Introduction:

  • Intermolecular forces are the forces among a molecule and another molecule.  There are three types of intermolecular forces in liquids they are dipole-dipole interactions, hydrogen bonds, and London forces.
  • Dipole-dipole interactions are formed between polar molecules.
  • Hydrogen bonding occurs due to attractions among a hydrogen covalently bonded to a very electronegative atoms such as fluorine, oxygen, or nitrogen and another electronegative atoms such as fluorine, oxygen, or nitrogen.
  • London forces are weakest type of intermolecular forces and it occurs in both polar and non-polar molecules.
  • The order of strongest intermolecular forces present in a liquid are arranged as descending order is shown below,

hydrogen bonding > dipole-dipole interactions > London forces

(b)

Interpretation Introduction

Interpretation:

The dominant types of intermolecular forces present in HF liquid state sample has to be determined.

Concept Introduction:

  • Intermolecular forces are the forces among a molecule and another molecule.  There are three types of intermolecular forces in liquids they are dipole-dipole interactions, hydrogen bonds, and London forces.
  • Dipole-dipole interactions are formed between polar molecules.
  • Hydrogen bonding occurs due to attractions among hydrogen covalently bonded to a very electronegative atoms such as fluorine, oxygen, or nitrogen and another electronegative atoms such as fluorine, oxygen, or nitrogen.
  • London forces are weakest type of intermolecular forces and it occurs in both polar and non-polar molecules.
  • The order of strongest intermolecular forces present in a liquid are arranged as descending order is shown below,

hydrogen bonding > dipole-dipole interactions > London forces

(c)

Interpretation Introduction

Interpretation:

The dominant types of intermolecular forces present in CO liquid state sample has to be determined.

Concept Introduction:

  • Intermolecular forces are the forces among a molecule and another molecule.  There are three types of intermolecular forces in liquids they are dipole-dipole interactions, hydrogen bonds, and London forces.
  • Dipole-dipole interactions are formed between polar molecules.
  • Hydrogen bonding occurs due to attractions among hydrogen covalently bonded to a very electronegative atoms such as fluorine, oxygen, or nitrogen and another electronegative atoms such as fluorine, oxygen, or nitrogen.
  • London forces are weakest type of intermolecular forces and it occurs in both polar and non-polar molecules.
  • The order of strongest intermolecular forces present in a liquid are arranged as descending order is shown below,

hydrogen bonding > dipole-dipole interactions > London forces

(d)

Interpretation Introduction

Interpretation:

The dominant types of intermolecular forces present in F2 liquid state sample has to be determined.

Concept Introduction:

  • Intermolecular forces are the forces among a molecule and another molecule.  There are three types of intermolecular forces in liquids they are dipole-dipole interactions, hydrogen bonds, and London forces.
  • Dipole-dipole interactions are formed between polar molecules.
  • Hydrogen bonding occurs due to attractions among hydrogen covalently bonded to a very electronegative atoms such as fluorine, oxygen, or nitrogen and another electronegative atoms such as fluorine, oxygen, or nitrogen.
  • London forces are weakest type of intermolecular forces and it occurs in both polar and non-polar molecules.
  • The order of strongest intermolecular forces present in a liquid are arranged as descending order is shown below,

hydrogen bonding > dipole-dipole interactions > London forces

Blurred answer

Chapter 7 Solutions

Bundle: General, Organic, and Biological Chemistry, 7th + OWLv2 Quick Prep for General Chemistry, 4 terms (24 months) Printed Access Card

Ch. 7.4 - Prob. 2QQCh. 7.4 - Based on Boyles law, if the pressure on 30.0 mL of...Ch. 7.5 - Prob. 1QQCh. 7.5 - Prob. 2QQCh. 7.5 - Prob. 3QQCh. 7.6 - Prob. 1QQCh. 7.6 - Prob. 2QQCh. 7.6 - Prob. 3QQCh. 7.7 - Prob. 1QQCh. 7.7 - Prob. 2QQCh. 7.7 - Prob. 3QQCh. 7.7 - Prob. 4QQCh. 7.8 - Prob. 1QQCh. 7.8 - Prob. 2QQCh. 7.8 - Prob. 3QQCh. 7.9 - Prob. 1QQCh. 7.9 - Prob. 2QQCh. 7.9 - Prob. 3QQCh. 7.10 - Prob. 1QQCh. 7.10 - Prob. 2QQCh. 7.10 - Prob. 3QQCh. 7.11 - Prob. 1QQCh. 7.11 - Prob. 2QQCh. 7.11 - Prob. 3QQCh. 7.11 - Prob. 4QQCh. 7.11 - Prob. 5QQCh. 7.11 - Prob. 6QQCh. 7.12 - Prob. 1QQCh. 7.12 - Prob. 2QQCh. 7.12 - Prob. 3QQCh. 7.13 - Prob. 1QQCh. 7.13 - Prob. 2QQCh. 7.13 - Prob. 3QQCh. 7.13 - Prob. 4QQCh. 7.13 - Prob. 5QQCh. 7.13 - Prob. 6QQCh. 7 - Indicate whether each of the following statements...Ch. 7 - Indicate whether each of the following statements...Ch. 7 - Prob. 7.3EPCh. 7 - Prob. 7.4EPCh. 7 - Prob. 7.5EPCh. 7 - Prob. 7.6EPCh. 7 - Prob. 7.7EPCh. 7 - Prob. 7.8EPCh. 7 - Prob. 7.9EPCh. 7 - Prob. 7.10EPCh. 7 - Prob. 7.11EPCh. 7 - Prob. 7.12EPCh. 7 - Prob. 7.13EPCh. 7 - Prob. 7.14EPCh. 7 - Prob. 7.15EPCh. 7 - Prob. 7.16EPCh. 7 - Prob. 7.17EPCh. 7 - Prob. 7.18EPCh. 7 - A sample of ammonia (NH3), a colorless gas with a...Ch. 7 - A sample of nitrogen dioxide (NO2), a toxic gas...Ch. 7 - Prob. 7.21EPCh. 7 - Prob. 7.22EPCh. 7 - Prob. 7.23EPCh. 7 - Prob. 7.24EPCh. 7 - Prob. 7.25EPCh. 7 - Prob. 7.26EPCh. 7 - A sample of N2 gas occupies a volume of 375 mL at...Ch. 7 - A sample of Ar gas occupies a volume of 1.2 L at...Ch. 7 - Prob. 7.29EPCh. 7 - Prob. 7.30EPCh. 7 - Prob. 7.31EPCh. 7 - Prob. 7.32EPCh. 7 - Prob. 7.33EPCh. 7 - Prob. 7.34EPCh. 7 - Prob. 7.35EPCh. 7 - Prob. 7.36EPCh. 7 - Prob. 7.37EPCh. 7 - Prob. 7.38EPCh. 7 - Prob. 7.39EPCh. 7 - Prob. 7.40EPCh. 7 - Prob. 7.41EPCh. 7 - Prob. 7.42EPCh. 7 - Prob. 7.43EPCh. 7 - Prob. 7.44EPCh. 7 - Prob. 7.45EPCh. 7 - Prob. 7.46EPCh. 7 - Prob. 7.47EPCh. 7 - Prob. 7.48EPCh. 7 - Prob. 7.49EPCh. 7 - Prob. 7.50EPCh. 7 - Determine the following for a 0.250-mole sample of...Ch. 7 - Determine the following for a 0.500-mole sample of...Ch. 7 - Prob. 7.53EPCh. 7 - Prob. 7.54EPCh. 7 - Prob. 7.55EPCh. 7 - What is the value of the ideal gas constant R if...Ch. 7 - The total pressure exerted by a mixture of O2, N2,...Ch. 7 - The total pressure exerted by a mixture of He, Ne,...Ch. 7 - A gas mixture contains O2, N2, and Ar at partial...Ch. 7 - A gas mixture contains He, Ne, and H2S at partial...Ch. 7 - Prob. 7.61EPCh. 7 - Prob. 7.62EPCh. 7 - Prob. 7.63EPCh. 7 - Prob. 7.64EPCh. 7 - Prob. 7.65EPCh. 7 - Prob. 7.66EPCh. 7 - Prob. 7.67EPCh. 7 - Prob. 7.68EPCh. 7 - Prob. 7.69EPCh. 7 - Prob. 7.70EPCh. 7 - Prob. 7.71EPCh. 7 - Prob. 7.72EPCh. 7 - What are the two ways in which the escape of...Ch. 7 - Prob. 7.74EPCh. 7 - Prob. 7.75EPCh. 7 - How does an increase in the surface area of a...Ch. 7 - Prob. 7.77EPCh. 7 - Prob. 7.78EPCh. 7 - Prob. 7.79EPCh. 7 - Prob. 7.80EPCh. 7 - Prob. 7.81EPCh. 7 - What is the relationship between the strength of...Ch. 7 - What term is used to describe a substance that...Ch. 7 - Prob. 7.84EPCh. 7 - Indicate whether each of the following statements...Ch. 7 - Indicate whether each of the following statements...Ch. 7 - Prob. 7.87EPCh. 7 - What is the relationship between location...Ch. 7 - Prob. 7.89EPCh. 7 - Prob. 7.90EPCh. 7 - Indicate whether or not each of the following...Ch. 7 - Prob. 7.92EPCh. 7 - Prob. 7.93EPCh. 7 - Prob. 7.94EPCh. 7 - For liquid-state samples of the following diatomic...Ch. 7 - For liquid-state samples of the following diatomic...Ch. 7 - Prob. 7.97EPCh. 7 - Prob. 7.98EPCh. 7 - Prob. 7.99EPCh. 7 - Prob. 7.100EPCh. 7 - Prob. 7.101EPCh. 7 - Prob. 7.102EPCh. 7 - Prob. 7.103EPCh. 7 - Prob. 7.104EPCh. 7 - Prob. 7.105EPCh. 7 - Prob. 7.106EP
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Text book image
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Text book image
Introductory Chemistry: An Active Learning Approa...
Chemistry
ISBN:9781305079250
Author:Mark S. Cracolice, Ed Peters
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Text book image
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning