(a)
Interpretation:
Between
Concept Introduction:
Boiling point:
Boiling is a form of evaporation where the conversion from the liquid state to vapor state occurs within the body of the liquid through bubble formation.
A normal boiling point is the temperature at which the liquid boils under a pressure of
London force:
London force is a type of weak intermolecular force that has an effect on boiling point. This weak temporary force occurs between two atoms or molecules (polar or non-polar)
The cause of London force is the temporary uneven distribution of electrons causing induced polarity. The strength of the London force depends on how easily a molecule can be distorted or polarized by the polarity present in another molecule. For the large molecules the outermost electrons are far from nucleus and as the result the attractive forces of nucleus acting on them are very weak and hence the outermost electrons can be easily polarized. Hence the induced polar molecule and the polar molecule will attract each other more.
Thus the molecules having higher mass have higher boiling point.
(b)
Interpretation:
Between
Concept Introduction:
Boiling point:
Boiling is a form of evaporation where the conversion from the liquid state to vapor state occurs within the body of the liquid through bubble formation.
A normal boiling point is the temperature at which the liquid boils under a pressure of
Hydrogen bonding:
Hydrogen bonding is an intermolecular force. This is an extra strong dipole-dipole interaction between a hydrogen atom covalently bonded to a small electronegative atom mainly
The vapor pressure of liquids having significant hydrogen bonding are much lower than those liquids having no hydrogen bonding. Because of presence of extensive hydrogen bonding the liquid molecules face difficulty to escape from the condensed state and additional energy is required to break the hydrogen bonds and go to the vapor state and as a result the liquids having extensive hydrogen bonding have higher boiling points.
Dipole-dipole interaction:
Dipole- dipole interactions are the strong intermolecular interaction that causes between two polar molecules.
In polar molecules there will be a force of attraction between the positive end and the negative end. Hence the molecules having higher electronegativity difference i.e. having more polarity will have higher dipole-dipole intermolecular attraction acting between them and as a result the boiling point will increase.
(c)
Interpretation:
Between
Concept Introduction:
Dipole-dipole interaction:
Dipole- dipole interactions are the strong intermolecular interaction that causes between two polar molecules.
In polar molecules there will be a force of attraction between the positive end and the negative end. Hence the molecules having higher electronegativity difference i.e. having more polarity will have higher dipole-dipole intermolecular attraction acting between them and as a result the boiling point will increase.
(d)
Interpretation:
Between
Concept Introduction:
Hydrogen bonding:
Hydrogen bonding is an intermolecular force. This is an extra strong dipole-dipole interaction between a hydrogen atom covalently bonded to a small electronegative atom mainly
The vapor pressure of liquids having significant hydrogen bonding are much lower than those liquids having no hydrogen bonding. Because of presence of extensive hydrogen bonding the liquid molecules face difficulty to escape from the condensed state and additional energy is required to break the hydrogen bonds and go to the vapor state and as a result the liquids having extensive hydrogen bonding have higher boiling points.
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
Bundle: General, Organic, and Biological Chemistry, 7th + OWLv2 Quick Prep for General Chemistry, 4 terms (24 months) Printed Access Card
- The halogens form a series of compounds with each other, which are called interhalogens. Examples are bromine chloride (BrCl), iodine bromide (IBr), bromine fluoride (BrF), and chlorine fluoride (ClF). Which compound is expected to have the highest boiling point at any given pressure? Explain.arrow_forwardConsider the following formulas for n-pentane and neopentane: CH3CH2CH2CH2CH3 -Pentane Both compounds have the same overall formula (C5H12, molar mass = 72.15 g/mol), yet n-pentane boils at 36.2C whereas neopentane boils at 9.5C. Rationalize the differences in the boiling points between these two nonpolar compounds.arrow_forwardHow do ionic solids differ in structure from molecular solids? What are the fundamental panicles in each? Give two examples of each type of solid and indicate the individual particles that make up the solids in each of your examples.arrow_forward
- Consider the compounds CI2, HCI. F2, NaF, and HF. Which compound has a boiling point closest to that of argon? Explain.arrow_forwardIf you get boiling water at 100 C on your skin, it burns. If you get 100 C steam on your skin, it burns much more severely. Explain why this is so.arrow_forwardA special vessel (see Fig. 10.45) contains ice and supercooled water (both at 10C) connected by vapor space. Describe what happens to the amounts of ice and water as time passes.arrow_forward
- Trichloroethane, C2H3Cl3 is used as a degreaser (solvent for waxes and oils). Its density is 1.435 g/mL and its vapor pressure at 20C is 124 mm Hg. (a) How many mL will vaporize in an evacuated 1.50-L flask at 20C? (b) A 3.00-mL sample is poured into an evacuated 1.5-L flask at 20C. Will all the liquid vaporize? If not, what is the pressure in the flask? (c) A similar 3.00-mL sample is poured into an evacuated 20.00-L flask at 20C. What physical state(s) is/are in the flask?arrow_forwardAn amorphous solid can sometimes be converted to a crystalline solid by a process called annealing. Annealing consists of heating the substance to a temperature just below the melting point of the crystalline form and then cooling it slowly. Explain why this process helps produce a crystalline solid.arrow_forwardCalculate the grams of oxygen gas required to produce 7.60 kJ of heat when hydrogen gas burns at constant pressure to give liquid water, given the following: 2H2(g)+O2(g)2H2O(g);H=484kJ Liquid water has a heat of vaporization of 44.0 kJ per mole at 25C.arrow_forward
- 8.51 Suppose that three unknown pure substances are liquids at room temperature. You determine that the boiling point of substance A is 53°C, that of substance B is 117°C, and that of substance C is 77°C. Based on this information, rank the three substances in order of their vapor pressures at room temperature.arrow_forwardWhat types of liquids typically form amorphous solids?arrow_forwardWhite phosphorus, P4, is normally a white, waxy solid melting at 44C to a colorless liquid. The liquid has a vapor pressure of 400.0 mmHg at 251.0C and 760.0 mmHg at 280.0C. What is the heat of vaporization of this substance?arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning