
Concept explainers
(a)
Interpretation:
By using kinetic molecular theory, what type of energy is related to cohesive forces has to be answered.
Concept Introduction:
Kinetic Molecular Theory of matter says about the way of matter can change among its phases of
- 1. Matter is composed of tiny particles (atoms, molecules, or ions) that have definite and characteristic sizes that do not change.
- 2. The particles are in constant random motion and therefore possess kinetic energy.
- 3. The particles interact with one another through attractions and repulsions and therefore possess potential energy.
- 4. The kinetic energy (velocity) of the particles increases as the temperature is increased.
- 5. The particles in a system transfer energy to each other through elastic collisions.
(b)
Interpretation:
By using kinetic molecular theory, what effect does temperature has on the magnitude of disruptive forces has to be answered.
Concept Introduction:
Kinetic Molecular Theory of matter says about the way of matter can change among its phases of solid, liquid, and gas. The basic idea of this theory is about the particles (atoms, molecules, or ions) present in a substance has constant motion and are attracted or repelled by each other. The kinetic molecular theory of matter provides five statements which explain the physical behavior of the three states of matter (solids, liquids, and gases) and they are summarized as follows,
- 1. Matter is composed of tiny particles (atoms, molecules, or ions) that have definite and characteristic sizes that do not change.
- 2. The particles are in constant random motion and therefore possess kinetic energy.
- 3. The particles interact with one another through attractions and repulsions and therefore possess potential energy.
- 4. The kinetic energy (velocity) of the particles increases as the temperature is increased.
- 5. The particles in a system transfer energy to each other through elastic collisions.
(c)
Interpretation:
By using kinetic molecular theory, what is the general effect of cohesive forces on a system of particles has to be answered.
Concept Introduction:
Kinetic Molecular Theory of matter says about the way of matter can change among its phases of solid, liquid, and gas. The basic idea of this theory is about the particles (atoms, molecules, or ions) present in a substance has constant motion and are attracted or repelled by each other. The kinetic molecular theory of matter provides five statements which explain the physical behavior of the three states of matter (solids, liquids, and gases) and they are summarized as follows,
- 1. Matter is composed of tiny particles (atoms, molecules, or ions) that have definite and characteristic sizes that do not change.
- 2. The particles are in constant random motion and therefore possess kinetic energy.
- 3. The particles interact with one another through attractions and repulsions and therefore possess potential energy.
- 4. The kinetic energy (velocity) of the particles increases as the temperature is increased.
- 5. The particles in a system transfer energy to each other through elastic collisions.
(d)
Interpretation:
By using kinetic molecular theory, what type of potential energy is particularly important when considering the physical states of matter has to be answered.
Concept Introduction:
Kinetic Molecular Theory of matter says about the way of matter can change among its phases of solid, liquid, and gas. The basic idea of this theory is about the particles (atoms, molecules, or ions) present in a substance has constant motion and are attracted or repelled by each other. The kinetic molecular theory of matter provides five statements which explain the physical behavior of the three states of matter (solids, liquids, and gases) and they are summarized as follows,
- 1. Matter is composed of tiny particles (atoms, molecules, or ions) that have definite and characteristic sizes that do not change.
- 2. The particles are in constant random motion and therefore possess kinetic energy.
- 3. The particles interact with one another through attractions and repulsions and therefore possess potential energy.
- 4. The kinetic energy (velocity) of the particles increases as the temperature is increased.
- 5. The particles in a system transfer energy to each other through elastic collisions.

Want to see the full answer?
Check out a sample textbook solution
Chapter 7 Solutions
Bundle: General, Organic, and Biological Chemistry, 7th + OWLv2 Quick Prep for General Chemistry, 4 terms (24 months) Printed Access Card
- Please label this COZY spectraarrow_forwardPlease label this HNMRarrow_forwardConsider the following gas chromatographs of Compound A, Compound B, and a mixture of Compounds A and B. Inject A B mixture Area= 9 Area = 5 Area = 3 Area Inject . མི། Inject J2 What is the percentage of Compound B in the the mixture?arrow_forward
- Rank these according to stability. CH3 H3C CH3 1 CH3 H3C 1 most stable, 3 least stable O 1 most stable, 2 least stable 2 most stable, 1 least stable O2 most stable, 3 least stable O3 most stable, 2 least stable O3 most stable, 1 least stable CH3 2 CH3 CH3 H₂C CH3 3 CH3 CHarrow_forwardConsider this IR and NMR: INFRARED SPECTRUM TRANSMITTANCE 0.8- 0.6 0.4 0.2 3000 10 9 8 00 HSP-00-541 7 CO 6 2000 Wavenumber (cm-1) сл 5 ppm 4 M Which compound gave rise to these spectra? N 1000 1 0arrow_forwardConsider this reaction (molecular weights are under each compound): HC=CH + 2 HCI --> C2H4Cl 2 MW = 26 36.5 99 If 4.4 g of HC=CH are reacted with 110 mL of a 2.3 M HCI solution, and 6.0 g of product are actually produced, what is the percent yield?arrow_forward
- What is the name of the major product of this reaction? OH CH3 H₂SO4, heat 1-methylcyclohexene O2-methyl-1-cyclohexene O 3-mthylcyclohexene 1-methyl-2-cyclohexenearrow_forwardWe added a brown solution of Br2 to one of our products, and the brown color disappeared. This indicated that our product wasarrow_forwardRank the following according to reactivity toward nitration: a) benzene b) bromobenzene c) nitrobenzene d) phenol Od) greatest, c) least Od) greatest, b) least Od) greatest, a) least a) greatest, b) least a) greatest, c) least Oa) greatest, d) least Ob) greatest, a) least O b) greatest, c) least Ob) greatest, d) least O c) greatest, a) least O c) greatest, b) least O c) greatest, d) leastarrow_forward
- O-Nitrophenol was distilled over with the steam in our experiment while the other isomer did not. This is due to: O intramolecular hydrogen bonding in the ortho isomer O intermolecular hydrogen bonding in the the ortho isomer O the ortho isomer has a lower density O the ortho isomer has a lower molecular weightarrow_forwardK 44% Problem 68 of 15 Submit Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. :6: :: :CI: CI CI: :0:0 Select to Add Arrows Select to Add Arrows H H Cl CI: CI CI: Select to Add Arrows Select to Add Arrows H :CI: Alarrow_forwardI I H :0: Submit Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. 0:0 :0: CI ΑΙ :CI: :CI: :0: CI Select to Add Arrows Select to Add Arrows cl. :0: Cl © ハ CI:: CI H CO Select to Add Arrows Select to Add Arrows 10: AI ::arrow_forward
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoOrganic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning



