Steel Design (Activate Learning with these NEW titles from Engineering!)
6th Edition
ISBN: 9781337094740
Author: Segui, William T.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 7.9.3P
To determine
(a)
The number of bolts using Load and Resistance Factor Design (LRFD).
To determine
(b)
The number of bolts using Allowed Strength Design (ASD).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Considering the following steel connection. The plates in Pink are 9mm steel plates. The middle plate (Yellow) is
18mm thick. The width of the plate is 100mm. The maximum allowable tension stresses on any of the plates is
100Mpa in Gross Area Yielding and 150 Mpa for Net Area or Tension Rupture. The bolts used are 8mm in
diameter, the holes are 10mm in diameter, no need to add 1.6mm. The bolts allow a maximum of 280 Mpa of
shear. Determine the maximum allowable "P" of the connection in kN.
The tension member is a PL 1⁄2 × 6. It is connected to a 3⁄8-inch-thick gusset plate with 7⁄8-inch-diameter bolts. Both components are of A242 steel.
Note:
A242 Fu = 70ksi
dh = db + 1/16’’
Use: Consider deformation at the bolt hole
what is the:
minimum spacing as per AISC code provisions
maximum spacing as per AISC code provisions
minimum edge distance as per AISC code provisions
maximum edge distance as per AISC code provisions
The tension member shown in Figure 3.4-2 is a
PL 5/8 x 10, and the steel is A36. The bolts are
7/8-inch in diameter.
a. Determine the design strength for LRFD.
b. Determine the allowable strength for ASD.
| 2"
+|+|
in seinefrinehich
9
оо
SO
Chapter 7 Solutions
Steel Design (Activate Learning with these NEW titles from Engineering!)
Ch. 7 - Prob. 7.3.1PCh. 7 - Prob. 7.3.2PCh. 7 - Prob. 7.4.1PCh. 7 - Prob. 7.4.2PCh. 7 - Prob. 7.4.3PCh. 7 - Prob. 7.4.4PCh. 7 - Prob. 7.4.5PCh. 7 - Prob. 7.4.6PCh. 7 - Prob. 7.6.1PCh. 7 - Prob. 7.6.2P
Ch. 7 - Prob. 7.6.3PCh. 7 - Prob. 7.6.4PCh. 7 - Prob. 7.6.5PCh. 7 - Prob. 7.6.6PCh. 7 - Prob. 7.7.1PCh. 7 - Prob. 7.7.2PCh. 7 - Prob. 7.7.3PCh. 7 - Prob. 7.8.1PCh. 7 - Determine the adequacy of the hanger connection in...Ch. 7 - Prob. 7.9.1PCh. 7 - Prob. 7.9.2PCh. 7 - Prob. 7.9.3PCh. 7 - Prob. 7.9.4PCh. 7 - Prob. 7.9.5PCh. 7 - Prob. 7.11.1PCh. 7 - Prob. 7.11.2PCh. 7 - Prob. 7.11.3PCh. 7 - Prob. 7.11.4PCh. 7 - Prob. 7.11.5PCh. 7 - Prob. 7.11.6PCh. 7 - Prob. 7.11.7PCh. 7 - Prob. 7.11.8PCh. 7 - Prob. 7.11.9PCh. 7 - Prob. 7.11.10P
Knowledge Booster
Similar questions
- Determine the design tensile strength of the 12 in. x 1/2 in. steel plate shown in the figure. The bolts are 3/4 in. diameter. The steel is A572 Gr. 50. Check yielding and fracture. Check Block Shear. T 3in. 73im 13in 1 3in tarrow_forwardAsap plsarrow_forwardA C8 × 11.5 is connected to a gusset plate with 7⁄8-inch-diameter bolts as shown in the Figure . The steel is A572 Grade 50. If the member is subjected to dead load and live load only, what is the total service load capacity if the live-to-dead load ratio is 3? Assume that Ae = 0.85An.a. Use LRFD.b. Use ASD.arrow_forward
- The splice plates shown in Figure 2 are 1/2-inch-thick. How many 7/8-inch-diameter, Group B bolts are required? The given load consists of 30% dead load and 70% live load. A36 steel is used. Threads are not excluded from the shear plane. 90 k Figure 2 a. Use LRFD. b. Use ASD. % in. 90 karrow_forwardDesign the size and length of Fillet weld for the lap joint shown below, Use SMAW E70XX process, plates are A-36 steel? 90k LL 40k DL R-X7 5" Gusset P 8 90k LL 40k DLarrow_forwardA 16 mm thick tension member is connected by two 6.25 mm spliced plates as shown. The tension member carries a service loads of dead load of 110 kN and a live load of 100 kN. 40, 80 , 40 , 40, 80 40 1625 mm 16 mm 1625 mm Fy 248 MPa Fu = 400 MPa Diam. of bolts = 16 mm Fnv = 300 MPa O Determine the nominal strength for one bolt due to shear. O Determine the nominal strength for one bolt due to bearing strength of the connection. ® Determine the number of bolts required for the connection.arrow_forward
- 3. A plate with width of 300mm and thickness of 20mm is to be connected to two plates of the same width with half the thickness by 24mm diameter bolts, as shown. The rivet holes have a diameter of 2mm larger than the rivet diameter. The plate is A36 steel with yield strength F,-248MPa and ultimate strength F,-400MPa. a. Determine the design strength of the section. b. Determine the allowable strength of the section 24mm 30mmarrow_forwardFive M20 8.8/ bolts are used in the connection between a beam and a column. Both sides of the cleat plate are welded to column using fillet weld (Manual metal arc AS4855 B-E43XX) with size of 5 mm. The design force transferred from beam to column is 300 kN. The cleat plate has thickness of 12 mm, fy = 300 MPa, and fü = 360 MPa. Determine the unit stress sustained by the weldarrow_forwardA C8 x 11.5 is connected to a gusset plate with 7/8 inch diameter bolts as shown in Figure P3.2-3. The steel is A572 Grade 50. If the member is subjected to a dead load and live load only, what is the total service load capacity if the live to dead load ratio is 3? Assume that Ae=0.85An. Use LRFD and ASD.arrow_forward
- PROB 2arrow_forwardCompute the maximum acceptable tensile SERVICE LOAD that may act on a single tee section that is connected to a gusset plate using welds 12 inches long, as shown in the figure. The service live load is three times the dead load. Use A992 steel. USE LRFD ONLY, no block shear will occur. WT12 x 38 Longitudinal welds 11.2 in? y = 3.0 in. Given: Properties of WT12 × 38: Ag = Use A992 Steel: F, = 50 ksi Fu = 65 ksi bf = 8.99in. %3D %3D LL = 3 DL %3D %3D tw y = centroidal distance bf C. What is the Governing Ultimate Tensile Capacity based on Net Fracture Round your answer to 3 decimal places.arrow_forwardWideFlange Section: W 16x67arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning