Steel Design (Activate Learning with these NEW titles from Engineering!)
6th Edition
ISBN: 9781337094740
Author: Segui, William T.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 7.11.1P
To determine
(a)
The maximum service load using Load and Resistance Factor Design (LRFD).
To determine
(b)
The maximum service load using Allowable Strength Design (ASD).
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Determine the maximum service load, P, that can be applied if the live load-to-dead load ratio is 2.0. Each component is a PL 3⁄4 x 7 of A242 steel. The weld is a 1⁄2-inch fillet weld, E70 electrode. a. Use LRFD. b. Use ASD.
A channel C250x37 mm section is welded to a 9 mm gusset plate. Welding is not permitted on the back of the channel. All steel is A36 with Fy=250 MPa and Fu=400 MPa. Use E70electrodes having and Fu=485 MPa (SMAW) process. The maximum length of lap is 250mm. The size of fillet weld is 8mm. Assume the width of slot weld is 22 mm. Size of slot weld is 13mm
Properties of C250x37
A = 4750 mm2
tw = 13.0 mm2
d = 254 mm
a. Determine the force resisted by the slot weld in kN, when the full tensile capacity is 712.5 KN (from the gross yielding capacity using ASD)
Hint: Full tensile Capacity = Force Resisted by Fillet and Slot Weld
Round your answer to 3 decimal places.
7. Use Allowable Strength Design – ASD
8. Use Load and Resistance Factor Design – LRFD
Answer everything.
Thank you!
Chapter 7 Solutions
Steel Design (Activate Learning with these NEW titles from Engineering!)
Ch. 7 - Prob. 7.3.1PCh. 7 - Prob. 7.3.2PCh. 7 - Prob. 7.4.1PCh. 7 - Prob. 7.4.2PCh. 7 - Prob. 7.4.3PCh. 7 - Prob. 7.4.4PCh. 7 - Prob. 7.4.5PCh. 7 - Prob. 7.4.6PCh. 7 - Prob. 7.6.1PCh. 7 - Prob. 7.6.2P
Ch. 7 - Prob. 7.6.3PCh. 7 - Prob. 7.6.4PCh. 7 - Prob. 7.6.5PCh. 7 - Prob. 7.6.6PCh. 7 - Prob. 7.7.1PCh. 7 - Prob. 7.7.2PCh. 7 - Prob. 7.7.3PCh. 7 - Prob. 7.8.1PCh. 7 - Determine the adequacy of the hanger connection in...Ch. 7 - Prob. 7.9.1PCh. 7 - Prob. 7.9.2PCh. 7 - Prob. 7.9.3PCh. 7 - Prob. 7.9.4PCh. 7 - Prob. 7.9.5PCh. 7 - Prob. 7.11.1PCh. 7 - Prob. 7.11.2PCh. 7 - Prob. 7.11.3PCh. 7 - Prob. 7.11.4PCh. 7 - Prob. 7.11.5PCh. 7 - Prob. 7.11.6PCh. 7 - Prob. 7.11.7PCh. 7 - Prob. 7.11.8PCh. 7 - Prob. 7.11.9PCh. 7 - Prob. 7.11.10P
Knowledge Booster
Similar questions
- Use an elastic analysis and determine the maximum load in the weld (in kips per inch of length).arrow_forwardA tension member splice is made with 14-inch E70 fillet welds as shown in Figure 5. Each side of the splice is welded as shown. All steel is A36. Determine the maximum service load, P, that can be applied if the live load to dead load ratio is 1.5. Note: Assume that the base metal shear strength is adequate (check the yielding strength for the gross area, fracture strength for the effective net area, weld strength and block shear strength). PL 5/8x8 4 in. Figure 5 2 PL 7/16x4arrow_forwardA tension member splice is made with 14-inch E70 fillet welds as shown in Figure 5. Each side of the splice is welded as shown. All steel is A36. Determine the maximum service load, P, that can be applied if the live load to dead load ratio is 1.5. Note: Assume that the base metal shear strength is adequate (check the yielding strength for the gross area, fracture strength for the effective net area, weld strength and block shear strength). P PL 58x8 1 4 in. Figure 5 a. Use LRFD. b. Use ASD. 2 PL 7/16x4 Parrow_forward
- An I-section bracket is connected to the column as shown. The size of weld is 6 mm on web and 10 mm on flange. What will be the safe load (in kN) that can be carried by the connection? Assume NA for whole weld = 110.57 x 106 mm4. Use Fe410 grade steel. 240 mm 170 mm P unu 00t * 280 mm unu 00t 280 mmarrow_forwardDesign a double angle tension member that is fillet welded to a gusset plate. Assume that the angles will be made from A36 steel, and the gusset plate from A572 Gr. 50 steel. Use 70ksi electrode. Design the system to resist a factored load of 200 kips. Check all applicable limit states that are possible. Provide your results on a sketch with standard weld symbols and details.arrow_forwardSituation 5. The angular section shown below is welded to a 12 mm gusset plate. Both materials are A36 steel with Fy = 250 MPa. The allowable tensile stress is 0.6Fy. The weld is E80 Electrode and 12 mm thickness. INNOVATIONS Properties of L 150x90x12: y = 50 shear stress of weld = 0.3Fu A = 2750 Allowable REVIEW INNOVATIE a K ➜ www A. 234 KN B. 349 KN b 13. What is the value of P without exceeding the allowable tensile the angle? C. 382 kN p. 413 kN 14. Find required length of the weld based on shear? A. 280 mm C. 300 mm D. 380 mm B. 320 mm 15. Find the required value of a? A. 108 mm B. 97.9 mm D. 185 mm NEW INNOVATIONS REVIEW INNOVATIOf REVIEW NEW INNOVATIONSarrow_forward
- a. Determine the design strength of a 1-in length of a 1/4-in fillet weld formed by the shielded metal arc process (SMAW) and E70 electrodes with a minimum tensile strength FEXX = 70 ksi. Assume that load is to be applied parallel to the weld length.b. Repeat part (a) if the weld is 20 in long.c. Repeat part (a) if the weld is 30 in long.arrow_forwardProblem 7: The load that will be applied to the connection shown has a live load - to - dead load ratio of 3.0. Investigate all limit states. All structural steel is A36, and the weld is a 1/4-inch fillet weld with E70 electrodes. Note that the tension member is a double-angle shape, and both of the angles are welded as shown. Use ASD. Determine the following. 5" 5" 2L5 X 32 X 5/16 LLBB -t = ³/8" Maximum service load that can be applied without exceeding the allowable capacity on yielding on gross area of the tension member (double angle). Maximum service load that can be applied without exceeding the allowable fracture on the net area of the tension member (double angle). Maximum service load that can be applied without exceeding the allowable block shear strength. Considering the weld metal and base metal strength, calculate the maximum service load that can be applied.arrow_forwardThe connection shows a PL10x200 loaded in tension and welded to a gusset plate. Calculate the ff, assuming A992 steel is used. Use U=0.85. The weld thickness is 6mm and the electrode is E70 (485 Mpa). What is the allowable tensile strength (neglecting block shear) in kN?arrow_forward
- Please answer the problem attached image.(using Nscp 2015) thank youarrow_forwardSituation 6: The lap splice shown will develop a full strength as shown in the figure. Using E70 electrodes. The width of the plate is 150 mm and the thickness is 12 mm. Use Fy = 345 E70 T T4 O 16 mm O 17 mm O 15 mm w O 14 mm W E70 1. Which of the following nearly gives the fillet weld size using the LRFD method. T T Warrow_forwardThe connection shows a PL10X200 loaded in tension and welded to a gusset plate 10mm thick. Calculate the following, assuming A992 steel is used. Use U =0.85. The weld thickness is ómm and the electrode is E70 (485MPA). PL 10 X 200 350mm What is the allowable weld connection strength (kN)?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning