(a)
If the members and its connections are satisfactory using LRFD.
Answer to Problem 7.6.6P
The members and its connections are satisfactory.
Explanation of Solution
Given:
Tension member is
Steel Used is
Thickness of gusset plate is
Diameter of the bolt is
Dead load is
Live load is
Wind load is
Length of the member is
Calculation:
The properties for
The gross area is
The distance from the plane of connection to the centroid is
The properties for
The ultimate tensile stress is
The yield strength is
Write the expression for slenderness ratio.
Here, radius of gyration is
Substitute
The slenderness ratio is less than
Write the expression for cross-sectional area of the bolt.
Here, cross-sectional area of the bolt is
Substitute
Write the expression for nominal shear capacity of one bolt.
Here, nominal shear stress of one bolt is
Substitute
Write the expression for slip critical shear strength per bolt for class A surfaces.
Here, the ratio of mean actual bolt pre-tensioned to specified bolt pre-tensioned is
Substitute
Write the expression to calculate the nominal bearing strength of an edge bolt
Here, nominal bearing strength is
With the upper limit of nominal bearing strength of the edge bolt,
Write the expression to calculate the value of
Here, height of the bolt is
Write the expression to calculate the value of
Here, spacing between the bolts is
Write the expression to calculate the height of the bolt.
Calculate the value of
Substitute
Calculate the value of
Substitute
Calculate the nominal bearing strength for edge bolts.
Substitute
Calculate the upper limit of nominal bearing strength for edge bolts.
Substitute
Thus, the minimum value of
Write the expression to calculate the nominal bearing strength of inner bolt
With the upper limit of nominal bearing strength of the inner bolt,
Calculate the value of
Substitute
Calculate the nominal bearing strength for inner bolts.
Substitute
Calculate the upper limit of nominal bearing strength for inner bolts.
Substitute
Thus, the minimum value of
Write the expression for total strength of connection.
Substitute
Write the expression to calculate the nominal strength in yielding.
Here, yield strength is
Substitute
Write the expression to calculate the diameter of the hole.
Here, diameter of the hole is
Substitute
Write the expression to calculate the effective area.
Here, area of holes is
Substitute
Substitute
Write the expression for the reduction factor.
Here, length of the connection is
Substitute
Write the expression for effective net area.
Here, the effective net area is
Substitute
Write the expression for nominal strength for fracture.
Here, nominal strength for fracture is
Substitute
Write the expression for gross shear area.
Here, thickness of member is
Substitute
Write the expression for the net area in shear.
Here, net area in shear is
Substitute
Substitute
Write the expression for net area in tension.
Here, tension length is
Substitute
Write the expression for the nominal strength in block shear.
Here, reduction factor is
Substitute
Write the expression for nominal shear strength in gross shear.
Here, nominal shear strength in gross shear is
Substitute
Thus, the nominal shear strength is taken as
Write the expression for design strength per bolt.
Here, load reduction factor is
Substitute
Write the expression for design strength in yielding.
Here, load reduction factor in yielding is
Substitute
Write the expression for design strength for fracture.
Here, design strength for fracture is
Substitute
Write the expression for design strength for block shear.
Here, design strength for block shear is
Substitute
Thus, the bolt strength is
Write the expression for total factored load.
Here, total factored load is
Substitute
The total factored load is
Conclusion:
Thus, the members and its connections are satisfactory.
(b)
If the members and its connections are satisfactory using ASD.
Answer to Problem 7.6.6P
The members and its connections are satisfactory.
Explanation of Solution
Calculation:
Write the expression to calculate the allowable strength for shear per bolt.
Here, allowable strength is
Substitute
Write the expression for allowable strength in yielding.
Here, safety factor is
Substitute
Calculate the allowable strength in fracture.
Substitute
Calculate the allowable strength for block shear.
Substitute
Thus, the design strength is
Write the expression for total factored load.
Here, allowable factored load is
Substitute
The allowable factored load is
Conclusion:
Thus, the members and its connections are satisfactory.
Want to see more full solutions like this?
Chapter 7 Solutions
Steel Design (Activate Learning with these NEW titles from Engineering!)
- Max. Flow rate from catchment area=0.25 m³/s drain to road (one side road) having roof section with longitudinal slope %1, n=0.016, cross-section slope %1, 24 m width of road, 0.15 m curb stone. Gutter data: 7 cm high of water. 1-What is the capacity (or Max. flow rate) for this road? 2- With 0.5 m3 /s is it flood? 3-Whate is the clear zone in case Q=0.5 m³/s?arrow_forwardEstimate Q inlet for curb inlet in sump, If y=5 cm, L=0.5 m and %13 clogging.arrow_forward3020,220 30 30m 120 Design inlet system for the road in figure below. C=0.93, i=65 mm/hr, Gutter data: y max.=9 cm, n=0.016, k=0.38, slope %1, Z=40, (space-bar-2 cm). Estimate inlet type. elevation in points (a-82.1, b=82 m), in point t rain water depth in point f>3 cm in u turn >5.5 cm. Sag point in S. Drow curbstone DATE DATE 5 100 Median strip 10 %1 d 72arrow_forward
- Estimate Q inlet for grate inlet in sump, If w=0.4 m, L-0.5 m, y=5 cm and opining space 3 cm and bar width= 2.5 cm %12 clogging.arrow_forward12:39 You HD ⚫2 February, 10:33 am GE342 Physical Geodesy Quiz 1 Tuesday 30th January 2024 Duration 1 hour Ill. 68% Question 1 A spherical triangle ABC has an angle B = 90° and sides a = 50° and b = 70°. Find A, C and c (9) Question 2 Given two cities: Los Angeles (34°15′ N, 118°15' W) and Jakarta (06°20'S, 106°10'E). a. Find the length of the great circle arc connecting the two cities. (7) b. What would be the azimuth setting for an airplane flying from L.A to Jakarta? (6) c. What would be the azimuth setting for an airplane flying from Jakarta to L.A? (7) 29 ← Replyarrow_forward11:49 Question 1 a. What is Geodesy? (2) b. What is physical geodesy. (2) .ill 73% c. Write short notes on the linkages physical geodesy has with each of the following: 8 marks Oceanography i. ii. Geophysics iii. iv. Geology Hydrology d. Define the following surfaces and draw a sketch showing the relationship between them. Geoid, reference ellipsoid, topography. (2+2+2) e. The following points had their ellipsoidal heights measured, compute their orthometric heights given the geoidal undulations: (2) Name TP5 ZQ135 Latitude Longitude Ellipsoid hgt. -12.61179 28.18421 1263.995 -12.80345 28.23022 1215.166 Geoidal undulations -6.715 -6.684 Question 2 (8+6+6) The following coordinates were given on a spherical earth with a radius of 6378000m, find a. The shortest distance between the points b. The azimuth from A to B c. The azimuth from B to A Latitude Longitude A 52°21'14"N 93°48'25″E B 52°24'18"N 93°42'30"E Question 3 (20) Two points lie on the same latitude as shown below: Point…arrow_forward
- Home prob.: ·A Simply Supported beam, with cross section (250x60. a & Span 6.00m. It is carrying the req'd.. prestressing force for :- und.l. of 20 kN/m - Compu ic.service (a) Bottom fiber Stress equal to zero under full load with max (b1 Top fiber Stress equal to zero under D.L. plus prestressin force Cat initial stage)arrow_forwardAn oil pipeline and a 1.200 m^3 rigid air tank are connected to each other by a manometer, as shown in the figure. The tank contains 15 kg of air at 80°C. Assume the pressure in the oil pipeline to remain constant and the air volume in the manometer to be negligible relative to the volume of the tank. Determine the change in Δh when the temperature in the tank drops to 20°C.arrow_forwardCalculate the collapse load (P) for the two fixed ended beam shown below. Use virtual work method P 2 m 4 m L= 6 marrow_forward
- Find the collapse load (Wu) for the one-end continuous beam shown below. Use virtual work method Wu 6 marrow_forwardFind the maximum distributed load can be applied to the two fixed ends beam shown below. Use Virtual work method Wu L=6marrow_forwardCalculate the collapse load (P) for the two fixed ended beam shown below. Use virtual work method P 2 m 4 m L=6marrow_forward
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage Learning