
(a)
Interpretation: The mechanism of given nucleophilic substitution reaction is to be determined and the products, along with their stereochemistry, are to be drawn.
Concept introduction: The replacement or substitution of one

Answer to Problem 7.69P
The mechanism of given nucleophilic substitution reaction is
Explanation of Solution
The structure of the given
In
However, in the given reaction halogen atom is not attached to chiral carbon. It is bonded to non-chiral carbon atom. The attack of nucleophile has not affect on the stereochemistry of reactant as shown in Figure 1.
Figure 1
The stereochemistry of reactant and product is same.
The mechanism of given nucleophilic substitution reaction is
(b)
Interpretation: The mechanism of given nucleophilic substitution reaction is to be determined and the products, along with their stereochemistry, are to be drawn.
Concept introduction: The replacement or substitution of one functional group with another different functional group in any chemical reaction is termed as substitution reaction. The electron rich chemical species that contains negative charge or lone pair of electrons are known as a nucleophile. In a nucleophilic substitution reaction, nucleophile takes the position of leaving group by attacking the electron deficient carbon atom.

Answer to Problem 7.69P
The mechanism of given nucleophilic substitution reaction is
Explanation of Solution
The structure of the given alkyl halide shows that a carbon atom, on which bromine atom is present, is bonded to two other carbon atoms. Hence, the bromine atom is bonded to secondary carbon atom. The removal of bromine atom leads to the formation of secondary carbocation. The secondary carbocation can undergo nucleophilic substitution reaction through both
In
Figure 2
The mechanism of given nucleophilic substitution reaction is
(c)
Interpretation: The mechanism of given nucleophilic substitution reaction is to be determined and the products, along with their stereochemistry, are to be drawn.
Concept introduction: The replacement or substitution of one functional group with another different functional group in any chemical reaction is termed as substitution reaction. The electron rich chemical species that contains negative charge or lone pair of electrons are known as a nucleophile. In a nucleophilic substitution reaction, nucleophile takes the position of leaving group by attacking the electron deficient carbon atom.

Answer to Problem 7.69P
The mechanism of given nucleophilic substitution reaction is
Explanation of Solution
The structure of the given alkyl halide shows that carbon atom, on which bromine atom is present, is bonded to three other carbon atoms. Hence, the bromine atom is bonded to tertiary carbon atom. The removal of bromine atom leads to the formation of planer tertiary carbocation. The tertiary carbocation is most likely to undergo nucleophilic substitution reaction by
In
Figure 3
The mechanism of given nucleophilic substitution reaction is
(d)
Interpretation: The mechanism of given nucleophilic substitution reaction is to be determined and the products, along with their stereochemistry, are to be drawn.
Concept introduction: The replacement or substitution of one functional group with another different functional group in any chemical reaction is termed as substitution reaction. The electron rich chemical species that contains negative charge or lone pair of electrons are known as a nucleophile. In a nucleophilic substitution reaction, nucleophile takes the position of leaving group by attacking the electron deficient carbon atom.

Answer to Problem 7.69P
The mechanism of given nucleophilic substitution reaction is
Explanation of Solution
The structure of the given alkyl halide shows that a carbon atom, on which iodine atom is present, is bonded to two other carbon atoms. Hence, the iodine atom is bonded to secondary carbon atom. The removal of iodine atom leads to the formation of secondary carbocation. The secondary carbocation can undergo nucleophilic substitution reaction through both
In
Figure 4
The mechanism of given nucleophilic substitution reaction is
(e)
Interpretation: The mechanism of given nucleophilic substitution reaction is to be determined and the products, along with their stereochemistry, are to be drawn.
Concept introduction: The replacement or substitution of one functional group with another different functional group in any chemical reaction is termed as substitution reaction. The electron rich chemical species that contains negative charge or lone pair of electrons are known as a nucleophile. In a nucleophilic substitution reaction, nucleophile takes the position of leaving group by attacking the electron deficient carbon atom.

Answer to Problem 7.69P
The mechanism of given nucleophilic substitution reaction is
Explanation of Solution
The structure of the given alkyl halide shows that a carbon atom, on which bromine atom is present, is bonded to two other carbon atoms. Hence, the bromine atom is bonded to secondary carbon atom. The removal of bromine atom leads to the formation of secondary carbocation. The secondary carbocation can undergo nucleophilic substitution reaction through both
In
Figure 5
The mechanism of given nucleophilic substitution reaction is
(f)
Interpretation: The mechanism of given nucleophilic substitution reaction is to be determined and the products, along with their stereochemistry, are to be drawn.
Concept introduction: The replacement or substitution of one functional group with another different functional group in any chemical reaction is termed as substitution reaction. The electron rich chemical species that contains negative charge or lone pair of electrons are known as a nucleophile. In a nucleophilic substitution reaction, nucleophile takes the position of leaving group by attacking the electron deficient carbon atom.

Answer to Problem 7.69P
The mechanism of given nucleophilic substitution reaction is
Explanation of Solution
The structure of the given alkyl halide shows that a carbon atom, on which bromine atom is present, is bonded to two other carbon atoms. Hence, the bromine atom is bonded to secondary carbon atom. The removal of bromine atom leads to the formation of secondary carbocation. The secondary carbocation can undergo nucleophilic substitution reaction through both
In
Figure 6
The mechanism of given nucleophilic substitution reaction is
Want to see more full solutions like this?
Chapter 7 Solutions
Organic Chemistry
- Identify the mechanism through which the following reaction will proceed and draw the major product. Part 1 of 2 Br KOH EtOH Through which mechanism will the reaction proceed? Select the single best answer. E1 E2 neither Part: 1/2 Part 2 of 2 Draw the major product formed as a result of the reaction. Click and drag to start drawing a structure. Xarrow_forwardWhat is single-point calibration? Provide an example.arrow_forwardDraw the major product formed via an E1 pathway.arrow_forward
- Part 9 of 9 Consider the products for the reaction. Identify the major and minor products. HO Cl The E stereoisomer is the major product and the Z stereoisomer is the minor product ▼ S major product minor productarrow_forwardConsider the reactants below. Answer the following questions about the reaction mechanism and products. HO Clarrow_forwardjulietteyep@gmail.com X YSCU Grades for Juliette L Turner: Orc X 199 A ALEKS - Juliette Turner - Modul X A ALEKS - Juliette Turner - Modul x G butane newman projection - Gox + www-awa.aleks.com/alekscgi/x/Isl.exe/10_u-IgNslkr7j8P3jH-IBxzaplnN4HsoQggFsejpgqKoyrQrB2dKVAN-BcZvcye0LYa6eXZ8d4vVr8Nc1GZqko5mtw-d1MkNcNzzwZsLf2Tu9_V817y?10Bw7QYjlb il Scribbr citation APA SCU email Student Portal | Main Ryker-Learning WCU-PHARM D MySCU YSCU Canvas- SCU Module 4: Homework (Ch 9-10) Question 28 of 30 (1 point) | Question Attempt: 1 of Unlimited H₂SO heat OH The mechanism of this reaction involves two carbocation intermediates, A and B. Part 1 of 2 KHSO 4 rearrangement A heat B H₂O 2 OH Draw the structure of A. Check Search #t m Save For Later Juliet Submit Assignm 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessarrow_forward
- The electrons flow from the electron-rich atoms of the nucleophile to the electrons poor atoms of the alkyl halide. Identify the electron rich in the nucleophile. Enter the element symbol only, do not include any changes.arrow_forwardHello, I am doing a court case analysis in my Analytical Chemistry course. The case is about a dog napping and my role is prosecution of the defendant. I am tasked in the Area of Expertise in Neutron Activation and Isotopic Analysis. Attached is the following case study reading of my area of expertise! The landscaping stone was not particularly distinctive in its decoration but matched both the color and pattern of the Fluential’s landscaping stone as well as the stone in the back of the recovered vehicle. Further analysis of the stone was done using a technique called instrumental neutron activation analysis. (Proceed to Neutron Activation data) Photo Notes: Landscaping stone recovered in vehicle. Stone at Fluential’s home is similar inappearance. Finally, the white paint on the brick was analyzed using stable isotope analysis. The brick recovered at the scene had smeared white paint on it. A couple of pieces of brick in the back of the car had white paint on them. They…arrow_forwardCite the stability criteria of an enamine..arrow_forward
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage Learning

