
Two identical steel balls, each of diameter 25.4 nun and moving in opposite directions at 5 m/s, run into each other head-on and bounce apart. Prior to the collision, one of the balls is squeezed in a vise while precise measurements are made of the resulting amount of compression. The results show that Hooke’s law is a fair model of the ball’s elastic behavior. For one datum, a force of 16 kN exerted by each jaw of the vise results in a 0.2-mm reduction in the diameter. The diameter returns to its original value when the force is removed, (a) Modeling the ball as a spring, find its spring constant. (b) Does the interaction of the balls during the collision last only for an instant or for a nonzero time interval? State your evidence, (c) Compute an estimate for the kinetic energy of each of the balls before they collide, (d) Compute an estimate for the maximum amount of compression each ball undergoes when the balls collide, (e) Compute an order-of-magnitude estimate for the time interval for which the balls are in contact. (In Chapter 15, you will learn to calculate the contact time interval precisely.)
(a)

The spring constant of ball when models the ball as a spring.
Answer to Problem 7.57AP
The spring constant of ball is
Explanation of Solution
Given info: The diameter of each steel ball is
The ball models as a spring then from Hooke’s law, the force exerts on the spring is,
Here,
Rearrange the above equation.
Substitute
Conclusion:
Therefore, the spring constant of ball is
(b)

The interaction of the balls during the collision.
Answer to Problem 7.57AP
The interaction of the balls during the collision cannot happen.
Explanation of Solution
The interaction of the balls during the collision is calculable through the time period.
From the Newton’s law, the force exerts by a jaw is,
Here,
The expression for the acceleration of the steel balls is,
Here,
The total velocity of the balls during the collision is,
Here,
Substitute
Substitute
The interaction of the balls during the collision lasts for a time interval if the interaction takes no time interval that means
Substitute
The zero time interval of interaction, the force exerted by each ball on the other would be infinite and that cannot happen.
Conclusion:
Therefore, the interaction of the balls during the collision cannot happen.
(c)

The kinetic energy of each of the balls before they collide.
Answer to Problem 7.57AP
The kinetic energy of each ball is
Explanation of Solution
The value of density of the steel is
The expression for the volume of steel ball is,
Here,
The radius of ball is the half of its diameter so the radius of steel ball is,
Here,
Substitute
Substitute
The expression for the mass of the steel ball is,
Substitute
The expression for the kinetic energy of the steel ball before they collide is,
Substitute
Conclusion:
Therefore, the kinetic energy of each ball is
(d)

The maximum amount of compression each balls when balls collide.
Answer to Problem 7.57AP
The maximum amount of compression of each balls is
Explanation of Solution
From part (c), the kinetic energy before collision of balls is,
The expression for the kinetic energy of spring after the collision of balls is,
Here,
The ball is models as a spring so the kinetic energy before the collisions of balls is converted into spring energy.
From part (a), the spring constant of balls that models as a spring is,
Substitute
Conclusion:
Therefore, the maximum amount of compression of each balls is
(e)

The time interval for which the balls are in contact.
Answer to Problem 7.57AP
The time interval is
Explanation of Solution
From part (a), the force exerts on the both the balls that models as spring is,
The average force of both the balls is,
From part (b), the expression for the time interval is,
Substitute
The steel balls move in opposite direction of each other so the velocity has opposite sign after they bounce apart to each other.
From part (a), the spring constant of balls that models as a spring is,
From part (c), the mass of steel ball is,
From part (d), the spring constant of the ball is,
Substitute
Conclusion:
Therefore, the time interval is
Want to see more full solutions like this?
Chapter 7 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
- solve for (_) Narrow_forwardTwo boxes of fruit on a frictionless horizontal surface are connected by a light string as in the figure below, where m₁ = 11 kg and m₂ = 25 kg. A force of F = 80 N is applied to the 25-kg box. mq m1 Applies T Peaches i (a) Determine the acceleration of each box and the tension in the string. acceleration of m₁ acceleration of m₂ tension in the string m/s² m/s² N (b) Repeat the problem for the case where the coefficient of kinetic friction between each box and the surface is 0.10. acceleration of m₁ acceleration of m₂ tension in the string m/s² m/s2 Narrow_forwardAll correct but t1 and t2 from part Aarrow_forward
- Three long, straight wires are mounted on the vertices of an equilateral triangle as shown in the figure. The wires carry currents of I₁ = 3.50 A, I2 = 5.50 A, and I3 = 8.50 A. Each side of the triangle has a length of 34.0 cm, and the point (A) is located half way between (11) and (12) along one of the sides. Find the magnitude of the magnetic field at point (A). Solve in Teslas (T). I₁arrow_forwardNumber There are four charges, each with a magnitude of 2.38 μC. Two are positive and two are negative. The charges are fixed to the corners of a 0.132-m square, one to a corner, in such a way that the net force on any charge is directed toward the center of the square. Find the magnitude of the net electrostatic force experienced by any charge. ips que Mi Units estic re harrow_forwardTwo long, straight wires are separated by distance, d = 22.0 cm. The wires carry currents of I1 = 7.50 A and I2 = 5.50 A in opposite directions, as shown in the figure. Find the magnitude of the net magnetic field at point (B). Let r₁ = 12.0 cm, r2 = 7.00 cm, and r3 = 13.0 cm. Solve in T. 12 d A √3arrow_forward
- Thank you in advance, image with question is attached below.arrow_forwardQuestion is attached, thank you.arrow_forwardTwo very small spheres are initially neutral and separated by a distance of 0.612 m. Suppose that 4.12 × 1013 electrons are removed from one sphere and placed on the other. (a) What is the magnitude of the electrostatic force that acts on each sphere? (b) Is the force attractive or repulsive?arrow_forward
- Estimate the diameter of the Moon. During a total solar eclipse, the Moon passes in front of the Sun so that during “totality” their apparent sizes match and the Moon blocks light from the Sun shining on the Earth. a) What do you predict the size of the Moon would be if you were to use a pinhole in an aluminum holder, meter stick, and white paper screen to project light from the full Moon through a pinhole onto a screen that is one meter away from the pinhole? b) Describe in detail how you would use this apparatus and your knowledge of pinhole phenomena to estimate the diameter of the Moon. Assume that the distance between the Earth and the Moon is 250,000 miles.arrow_forwardThe following data was collected for a friction experiment in which an object was observed moving at constant speed over a surface. Graph the Applied Force versus the Normal Force and determine the coefficient of friction. Is this value the coefficient of kinetic friction or the coefficient of static friction? Justify your answer. Trial Normal Force Applied Force 1 4.13 1.44 2 6.41 1.68 3 8.94 2.82 4 11.34 3.94 5 13.82 5.05arrow_forward1. Measurements and Linear Regression 1.1 Introduction The objective of this lab assignment is to represent measurement data in graphical form in order to illustrate experimental data and uncertainty visually. It is often convenient to represent experimental data graphically, not only for reporting results but also to compute or measure several physical parameters. For example, consider two physical quantities represented by x and y that are linearly related according to the algebraic relationship, y=mx+b, (1.1) where m is the slope of the line and b is the y-intercept. In order to assess the linearity between y and x, it is convenient to plot these quantities in a y versus x graph, as shown in Figure 1.1. Datapoints Line of regression Figure 1.1: Best fit line example. Once the data points are plotted, it is necessary to draw a "best fit line" or "regression line" that describes the data. A best fit line is a straight line that is the best approximation of the given set of data, and…arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





