
Concept explainers
(i)
The rank of following gravitational acceleration for the following Falling object.
(i)

Answer to Problem 7.13OQ
The rank of the following gravitational acceleration for the falling object
Explanation of Solution
Given info: A
Write the expression for the gravitational acceleration at the height
Here,
The radius of the earth is much greater than the height from the point where the object is falling so that the change in the gravitation acceleration is negligible. The value of the gravitational acceleration for all object are equal to
The rank of the following gravitational acceleration for the falling object
Here,
Conclusion:
Therefore, the rank of following gravitational acceleration for the falling object
(ii)
The rank of following gravitational forces for the following Falling object.
(ii)

Answer to Problem 7.13OQ
The rank of the following gravitational forces for the falling object is
Explanation of Solution
Given info: A
Write the expression for the gravitational force.
Here,
For object of mass
Substitute
Thus, the force on the
For object of mass
Substitute
Thus, the force on the
For object of mass
Substitute
Thus, the force on the
For object of mass
Substitute
Thus, the force on the
From the value of the forces the ranking of the following gravitational forces for the falling object.
Conclusion:
Therefore, the rank of the following gravitational forces for the falling object is
(iii)
The rank of following gravitational potential energy for the following Falling object.
(iii)

Answer to Problem 7.13OQ
The rank of the following gravitational potential energy for the falling object is
Explanation of Solution
Given info: A
Write the expression for the gravitational potential energy for the falling of object.
Here,
For object of mass
Substitute
Thus, the potential energy for the
For object of mass
Substitute
Thus, the potential energy for the
For object of mass
Substitute
Thus, the potential energy for the
For object of mass
Substitute
Thus, the potential energy for the
From the value of the energies the ranking of the following gravitational potential energies for the falling object.
Conclusion:
Therefore, the rank of the following gravitational potential energy for the falling object is
Want to see more full solutions like this?
Chapter 7 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
- (a) For a spherical capacitor with inner radius a and outer radius b, we have the following for the capacitance. ab C = k₂(b- a) 0.0695 m 0.145 m (8.99 × 10º N · m²/c²)( [0.145 m- 0.0695 m × 10-11 F = PF IIarrow_forwardA pendulum bob A (0.5 kg) is given an initialspeed of vA = 4 m/s when the chord ishorizontal. It then hits a stationary block B (1kg) which then slides to a maximum distanced before it stops. Determine the value of d.The coefficient of static friction between theblock and the plane is μk = 0.2. The coefficientof restitution between A and B is e = 0.8.Ans: d=1.0034 marrow_forwardFigure 29-43 Problem 12. ••13 In Fig. 29-44, point P₁ is at distance R = 13.1 cm on the perpendicular bisector of a straight wire of length L = 18.0 cm carrying current i = 58.2 mA. (Note that the wire is not long.) What is the magnitude of the magnetic field at P₁ due to i? P2° R R Larrow_forward
- Checkpoint 1 The figure shows the current i in a single-loop circuit with a battery B and a resistance R (and wires of neg- ligible resistance). (a) Should the emf arrow at B be drawn pointing leftward or rightward? At points a, B C R b, and c, rank (b) the magnitude of the current, (c) the electric potential, and (d) the electric potential energy of the charge carriers, greatest first.arrow_forwardPls help ASAParrow_forwardPls help asaparrow_forward
- Pls help asaparrow_forward3. If the force of gravity stopped acting on the planets in our solar system, what would happen? a) They would spiral slowly towards the sun. b) They would continue in straight lines tangent to their orbits. c) They would continue to orbit the sun. d) They would fly straight away from the sun. e) They would spiral slowly away from the sun. 4. 1 The free-body diagram of a wagon being pulled along a horizontal surface is best represented by A F N B C 0 Ꭰ FN E a) A b) B c) C app app The app 10 app d) e) ס ח D E 10 apparrow_forwardPls help ASAParrow_forward
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill





