Concept explainers
(a)
Interpretation:
The water temperate, the liquid and head space volume (L), and the mass of water vapor in the head space (kg) at time t1 should be determined.
Concept introduction:
All the properties of liquid and vapor of water, enthalpy, specific volume, and specific entropy vary with change with saturation pressure.
(b)
Interpretation:
The water temperature, the liquid and head space volume (L), and the mass of water vapor in(g) that evaporates between t1 and t2 should be determined.
Concept introduction:
The energy transfer properties of saturated water can be calculated by saturated steam table. If pressure is given then we can find value of temperature and same with if temperature given we can find other properties such as enthalpy, specific volume etc.
(c)
Interpretation:
The amount of heat (kJ) transferred to the tank contains between t1 and t2 should be calculated and two resins why the actual heat input to the tank must have been greater than the calculated value should be given.
Concept introduction:
Sum of the heat of liquid and vapor at t1 gives total heat contains in the tank similarly at t2 we can calculate total heat contains. And difference of heat contains at t2 and t1 gives heat transferred to the tank between t1 and t2.
(d)
Interpretation:
The three different factors responsible for the increase in pressure resulting from the transfer of heat to the tank should be listed.
Concept introduction:
If increase the temperature vaporization increases and pressure increases, density of liquid decrease, because system is closed system.
(e)
Interpretation:
The ways in which this accident could have been avoided should be listed.
Concept introduction:
Sensors play an important role in such situation because if processes cross the set point processes automatic open safety valve.
(f)
Interpretation:
The temperature at which the valve is open and the rate at which the needed to release steam (kg/KJ of added heat) in order to keep the tank pressure from rising should be determined.
Concept introduction:
From stem table find the corresponding value at 10 bars. In this case saturated steam table give the other properties such as enthalpy, specific volume etc.
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
ELEM.PRIN.OF CHEM.PROCESS-ACCESS
- please, provide me with right resultsarrow_forwardEx. HW. A vertical glass tube, 2cm ID & 5m long in heated uniformly over its length. The water enter at (200-204 C) & 68.9 bar calculated the pressure drop if the flowrate 0.15 Kg/s & the power applied as a heat to the fluid is 100KW using the homogeneous model. Given that enthalpy at inlet temp.=0.87MJ/Kg, enthalpy saturation temp (285C)=1.26 MJ/Kg and μl=0.972*10-4 Ns/m2, μG=2.89*10-5 Ns/m2, UG=2.515*10-2m3/Kg and the change in UG over range of pressure=-4.45*10-4m3/Kg/bar.arrow_forward4. An experimental test rig is used to examine two-phase flow regimes in horizontal pipelines. A particular experiment involved uses air and water at a temperature of 25°C, which flow through a horizontal glass tube with an internal diameter of 25.4 mm and a length of 40 m. Water is admitted at a controlled rate of 0.026 kgs at one end and air at a rate of 5 x 104 kgs in the same direction. The density of water is 1000 kgm³, and the density of air is 1.2 kgm. Determine the mass flow rate, the mean density, gas void fraction, and the superficial velocities of the air and water. Answer: 0.02605 kgs 1, 61.1 kgm³, 0.94, 0.822 ms-1, 0.051 ms-1arrow_forward
- and the viscosity of the water is 1.24 × 104 Nsm 2. Answer: Slug flow 1. Determine the range of mean density of a mixture of air in a 50:50 oil-water liquid phase across a range of gas void fractions. The den- sity of oil is 900 kgm³, water is 1000 kgm³, and gas is 10 kgm³.arrow_forwardA chemical reaction takes place in a container of cross-sectional area 50.0 cm2. As a result of the reaction, a piston is pushed out through 15 cm against an external pressure of 121 kPa. Calculate the work done (in J) by the system.arrow_forwardExample 7.2 Steam is generated in a high pressure boiler containing tubes 2.5 m long and 12.5 mm internal diameter. The wall roughness is 0.005 mm. Water enters the tubes at a pressure of 55.05 bar and a temperature of 270°C, and the water flow rate through each tube is 500 kg/h. Each tube is heated uniformly at a rate of 50 kW. Calle (a) Estimate the pressure drop across each tube (neglecting end effects) using (i) the homogeneous flow model and (ii) the Martinelli-Nelson correlation. (b) How should the calculation be modified if the inlet temperature were 230°C at the same pressure?arrow_forward
- Please solve this question by simulation in aspen hysysarrow_forward(11.35. For a binary gas mixture described by Eqs. (3.37) and (11.58), prove that: 4812 Pу132 ✓ GE = 812 Py1 y2. ✓ SE dT HE-12 T L = = (812 - 7 1/8/123) d² 812 Pylyz C=-T Pylyz dT dT² See also Eq. (11.84), and note that 812 = 2B12 B11 - B22. perimental values of HE for binary liquid mixtures ofarrow_forwardplease provide me the solution with more details. because the previous solution is not cleararrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The