Concept explainers
(a)
Interpretation: The equilibrium picture of 10 molecules of HA and HCl acid in their two separate aqueous solutions needs to be drawn.
Concept Introduction: An acid is the substance that gives H+ or
On the contrary, a weak acid ionized partially and reaches to equilibrium.
(a)
Answer to Problem 6DQ
Explanation of Solution
HA is weak acid and HCl is a strong acid. For a weak acid HA, the ionization reaction can be written as:
Since it is partial ionization hence some molecules of HCl and water must be present in the solution and the picture of equilibrium can be shown as:
Whereas HCl is a strong acid so it will ionize completely as given below. Hence no HCl and water molecules must be present in the solution.
Hence the picture of equilibrium can be shown as:
(b)
Interpretation: The major species in the two separate aqueous solution of HA and HCl acid needs to be determined.
Concept Introduction: An acid is the substance that gives H+ or
On the contrary, a weak acid ionized partially and reaches to equilibrium.
(b)
Answer to Problem 6DQ
Explanation of Solution
HA is weak acid and HCl is a strong acid. For a weak acid HA, the ionization reaction can be written as:
Whereas HCl is a strong acid so it will ionize completely as given below:
Hence the major species in both acids must be:
(c)
Interpretation: The Ka value from the equilibrium picture of 10 molecules of HA and HCl acid in their two separate aqueous solution needs to be calculated.
Concept Introduction: An acid is the substance that gives H+ or
On the contrary, a weak acid ionized partially and reaches to equilibrium.
(c)
Answer to Problem 6DQ
Explanation of Solution
The Kaexpression for both acids can be written as given :
Substitute the values of number of molecules from each picture:
(d)
Interpretation: The order from strongest to weakest base for
Concept Introduction: An acid is the substance that gives H+ or
On the contrary, a weak acid ionized partially and reaches to equilibrium.
(d)
Answer to Problem 6DQ
Explanation of Solution
HA is weak acid and HCl is a strong acid. For a weak acid HA, the ionization reaction can be written as:
Whereas HCl is a strong acid so it will ionize completely as given below:
According to the Bronsted-Lowery acid-base theory, a strong acid gives H+ ions and form weak conjugate base whereas a strong base accepts H+ ion to form weak conjugate acid of it. Since HA is weak acid and forms
Want to see more full solutions like this?
Chapter 7 Solutions
Chemical Principles
- How is acid strength related to the value of Ka? What is the difference between strong acids and weak acids (see Table 13-1)? As the strength of an acid increases, what happens to the strength of the conjugate base? How is base strength related to the value of Kb? As the strength of a base increases, what happens to the strength of the conjugate acid?arrow_forwardWrite an equation that describes the equilibrium that exists when the weak acid benzoic acid (C6H5CO2H) dissolves in water. Identify each of the four species in solution as either Brnsted acids or Brnsted bases. Does the equilibrium favor the products or the reactants? (In acting as an acid, the CO2H group supplies H+ to form H3O+.)arrow_forwardFor conjugate acidbase pairs, how are Ka and Kb related? Consider the reaction of acetic acid in water CH3CO2H(aq)+H2O(l)CH3CO2(aq)+H3O+(aq) where Ka = 1.8 105 a. Which two bases are competing for the proton? b. Which is the stronger base? c. In light of your answer to part b. why do we classify the acetate ion (CH3CO2) as a weak base? Use an appropriate reaction to justify your answer. In general, as base strength increases, conjugate acid strength decreases. Explain why the conjugate acid of the weak base NH3 is a weak acid. To summarize, the conjugate base of a weak acid is a weak base and the conjugate acid of a weak base is a weak acid (weak gives you weak). Assuming Ka for a monoprotic strong acid is 1 106, calculate Kb for the conjugate base of this strong acid. Why do conjugate bases of strong acids have no basic properties in water? List the conjugate bases of the six common strong acids. To tie it all together, some instructors have students think of Li+, K+, Rb+, Cs+, Ca2+, Sr2+, and Ba2+ as the conjugate acids of the strong bases LiOH, KOH. RbOH, CsOH, Ca(OH)2, Sr(OH)2, and Ba(OH)2. Although not technically correct, the conjugate acid strength of these cations is similar to the conjugate base strength of the strong acids. That is, these cations have no acidic properties in water; similarly, the conjugate bases of strong acids have no basic properties (strong gives you worthless). Fill in the blanks with the correct response. The conjugate base of a weak acid is a_____base. The conjugate acid of a weak base is a_____acid. The conjugate base of a strong acid is a_____base. The conjugate acid of a strong base is a_____ acid. (Hint: Weak gives you weak and strong gives you worthless.)arrow_forward
- Each box represents an acid solution at equilibrium. Squares represent H+ ions. Circles represent anions. (Although the anions have different identities in each figure, they are all represented as circles.) Water molecules are not shown. Assume that all solutions have the same volume. (a) Which figure represents the strongest acid? (b) Which figure represents the acid with the smallest Ka? (c) Which figure represents the acid with the lowest pH?arrow_forwardConsider the following mathematical expressions. a. [H+] = [HA]0 b. [H+] = (Ka [HA]0)1/2 c. [OH] = 2[B]0 d. [OH] = (Kb [B]0)1/2 For each expression, give three solutions where the mathematical expression would give a good approximation for the [H+] or [OH]. [HA]0 and [B]0 represent initial concentrations of an acid or a base.arrow_forwardExplain why a sample of pure water at 40 C is neutral even though [H3O+]=1.7107M . Kw is 2.91014 at 40 C.arrow_forward
- For each of the following reactions, predict whether the equilibrium lies predominantly to the left or to the right. Explain your predictions briefly. (a) H2S(aq) + CO32(aq) HS(aq) + HCO3(aq) (b) HCN(aq) + SO42(aq) CN(aq) + HSO4(aq) (c) SO42(aq) + CH3CO2H(aq) HSO4(aq) + CH3CO2(aq)arrow_forward. The concepts of acid-base equilibria were developed in this chapter for aqueous solutions (in aqueous solutions, water is the solvent and is intimately involved in the equilibria). However, the Brønsted-Lowry acid-base theory can be extended easily to other solvents. One such solvent that has been investigated in depth is liquid ammonia. NH3. a. Write a chemical equation indicating how HCl behaves as an acid in liquid ammonia. b. Write a chemical equation indicating how OH- behaves as a base in liquid ammonia.arrow_forward. Strong buses are bases that completely ionize in water to produce hydroxide ion, OH-. The strong bases include the hydroxides of the Group I elements. For example, if 1.0 mole of NaOH is dissolved per liter, the concentration of OH ion is 1.0 M. Calculate the [OH-], pOH, and pH for each of the following strong base solutions. a. 1.10 M NaOH b. 2.0104M KOH c. 6.2103M CsOH d. 0.0001 M NaOHarrow_forward
- Use Table 14.3 to help answer the following questions. a. Which is the stronger base, ClO4 or C6H5NH2? b. Which is the stronger base, H2O or C6H5NH2? c. Which is the stronger base, OH or C6H5NH2? d. Which is the stronger base, C6H5NH2 or CH3NH2?arrow_forwardProve that Ka3 Kb1 = Kw for phosphoric acid, H3PO4, by adding the chemical equilibrium expressions that corresponds to the third ionization step of the acid in water with the first of the three successive steps of the reaction of phosphate ion, PO43, with water.arrow_forwardStrong Acids, Weak Acids, and pH Two 0.10-mol samples of the hypothetical monoprotic acids HA(aq) and HB(aq) are used to prepare 1.0-L stock solutions of each acid. a Write the chemical reactions for these acids in water. What are the concentrations of the two acid solutions? b One of these acids is a strong acid, and one is weak. What could you measure that would tell you which acid was strong and which was weak? c Say that the HA(aq) solution has a pH of 3.7. Is this the stronger of the two acids? How did you arrive at your answer? d What is the concentration of A(aq) in the HA solution described in part c? e If HB(aq) is a strong acid, what is the hydronium-ion concentration? f In the solution of HB(aq), which of the following would you expect to be in the greatest concentration: H3O+(aq), B(aq), HB(aq), or OH(aq)? How did you decide? g In the solution of HA(aq), which of the following would you expect to be in the greatest concentration: H3O+(aq), A+(aq), HA(aq), or OH(aq)? How did you decide? h Say you add 1.0 L of pure water to a solution of HB. Would this water addition make the solution more acidic, make it less acidic, or not change the acidity of the original solution? Be sure to fully justify your answer. i You prepare a 1.0-L solution of HA. You then take a 200-mL sample of this solution and place it into a separate container. Would this 200 mL sample be more acidic, be less acidic, or have the same acidity as the original 1.0-L solution of HA(aq)? Be sure to support your answer.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning