Chemical Principles
8th Edition
ISBN: 9781337247269
Author: Steven S. Zumdahl; Donald J. DeCoste
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 7, Problem 143AE
Interpretation Introduction
Interpretation: ThepH of 0.15 M citric acid (
Concept Introduction: An acid is the substance that gives H+ or
The number of hydrogen ions given by an acid can be different from other acid. On the basis of number of hydrogen ion given by an acid, they can be classified as monoprotic, diprotic and triprotic acids.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
2. Calculate the overall formation constant for [Fe(CN)6]³, given that the overall formation
constant for [Fe(CN)6] 4 is ~1032, and that:
Fe3+ (aq) + e
= Fe²+ (aq)
E° = +0.77 V
[Fe(CN)6]³ (aq) + e¯ = [Fe(CN)6] (aq) E° = +0.36 V
(4 points)
5. Consider the compounds shown below as ligands in coordination chemistry and identify
their denticity; comment on their ability to form chelate complexes. (6 points)
N
N
A
B
N
N
N
IN
N
C
1.
Use standard reduction potentials to rationalize quantitatively why:
(6 points)
(a) Al liberates H2 from dilute HCl, but Ag does not;
(b) Cl2 liberates Br2 from aqueous KBr solution, but does not liberate C12 from aqueous KCl
solution;
c) a method of growing Ag crystals is to immerse a zinc foil in an aqueous solution of AgNO3.
Chapter 7 Solutions
Chemical Principles
Ch. 7 - Prob. 1DQCh. 7 - Differentiate between the terms strength and...Ch. 7 - Prob. 3DQCh. 7 - Prob. 4DQCh. 7 - Prob. 5DQCh. 7 - Prob. 6DQCh. 7 - Prob. 7DQCh. 7 - Prob. 8DQCh. 7 - Prob. 9DQCh. 7 - Prob. 10DQ
Ch. 7 - Prob. 11DQCh. 7 - Prob. 12DQCh. 7 - Prob. 13DQCh. 7 - Prob. 14DQCh. 7 - Prob. 15DQCh. 7 - Prob. 16DQCh. 7 - Prob. 17DQCh. 7 - Consider the autoionization of liquid ammonia:...Ch. 7 - The following are representations of acidbase...Ch. 7 - Prob. 20ECh. 7 - For each of the following aqueous reactions,...Ch. 7 - Write balanced equations that describe the...Ch. 7 - Write the dissociation reaction and the...Ch. 7 - Prob. 24ECh. 7 - Consider the following illustrations: Which beaker...Ch. 7 - Prob. 26ECh. 7 - Prob. 27ECh. 7 - Prob. 28ECh. 7 - Prob. 29ECh. 7 - Prob. 30ECh. 7 - Consider the reaction of acetic acid in water...Ch. 7 - Prob. 32ECh. 7 - Prob. 33ECh. 7 - Prob. 34ECh. 7 - Prob. 35ECh. 7 - Values of Kw as a function of temperature are as...Ch. 7 - Prob. 37ECh. 7 - Prob. 38ECh. 7 - Prob. 39ECh. 7 - Prob. 40ECh. 7 - Prob. 41ECh. 7 - Prob. 42ECh. 7 - Prob. 43ECh. 7 - A solution is prepared by adding 50.0 mL of 0.050...Ch. 7 - Prob. 45ECh. 7 - Prob. 46ECh. 7 - Prob. 47ECh. 7 - Prob. 48ECh. 7 - Calculate the concentration of all species present...Ch. 7 - Prob. 50ECh. 7 - Prob. 51ECh. 7 - Prob. 52ECh. 7 - Prob. 53ECh. 7 - Prob. 54ECh. 7 - A solution is prepared by dissolving 0.56 g of...Ch. 7 - At 25°C a saturated solution of benzoic acid (see...Ch. 7 - Prob. 57ECh. 7 - Prob. 58ECh. 7 - A solution contains a mixture of acids: 0.50 M HA...Ch. 7 - Prob. 60ECh. 7 - Prob. 61ECh. 7 - Prob. 62ECh. 7 - Prob. 63ECh. 7 - Prob. 64ECh. 7 - Prob. 65ECh. 7 - Trichloroacetic acid (CCl3CO2H) is a corrosive...Ch. 7 - Prob. 67ECh. 7 - Prob. 68ECh. 7 - Prob. 69ECh. 7 - Prob. 70ECh. 7 - Prob. 71ECh. 7 - Prob. 72ECh. 7 - Prob. 73ECh. 7 - Prob. 74ECh. 7 - Prob. 75ECh. 7 - Prob. 76ECh. 7 - Prob. 77ECh. 7 - Prob. 78ECh. 7 - Prob. 79ECh. 7 - Prob. 80ECh. 7 - Calculate the pH of a 0.20 M C2H5NH2 solution...Ch. 7 - Prob. 82ECh. 7 - Prob. 83ECh. 7 - Prob. 84ECh. 7 - Prob. 85ECh. 7 - Quinine (C20H24N2O2) is the most important...Ch. 7 - Prob. 87ECh. 7 - Prob. 88ECh. 7 - Prob. 89ECh. 7 - Prob. 90ECh. 7 - Prob. 91ECh. 7 - Prob. 92ECh. 7 - Prob. 93ECh. 7 - Prob. 94ECh. 7 - A typical vitamin C tablet (containing pure...Ch. 7 - Prob. 96ECh. 7 - Prob. 97ECh. 7 - Prob. 98ECh. 7 - Prob. 99ECh. 7 - Prob. 100ECh. 7 - Rank the following 0.10 M solutions in order of...Ch. 7 - Prob. 102ECh. 7 - Prob. 103ECh. 7 - Prob. 104ECh. 7 - Prob. 105ECh. 7 - Prob. 106ECh. 7 - Prob. 107ECh. 7 - Prob. 108ECh. 7 - Prob. 109ECh. 7 - Prob. 110ECh. 7 - Prob. 111ECh. 7 - Prob. 112ECh. 7 - Prob. 113ECh. 7 - Prob. 114ECh. 7 - Prob. 115ECh. 7 - Prob. 116ECh. 7 - Prob. 117ECh. 7 - Prob. 118ECh. 7 - Prob. 119ECh. 7 - Prob. 120ECh. 7 - Prob. 121ECh. 7 - Prob. 122ECh. 7 - Calculate the pH of a 7.0107M HCl solution.Ch. 7 - Calculate the pH of a 1.0107M solution of NaOHin...Ch. 7 - Prob. 125AECh. 7 - Prob. 126AECh. 7 - Prob. 127AECh. 7 - Prob. 128AECh. 7 - Hemoglobin (abbreviated Hb) is a protein that is...Ch. 7 - Prob. 130AECh. 7 - Prob. 131AECh. 7 - Prob. 132AECh. 7 - Prob. 133AECh. 7 - Prob. 134AECh. 7 - Prob. 135AECh. 7 - Prob. 136AECh. 7 - Prob. 137AECh. 7 - One mole of a weak acid HA was dissolved in 2.0 L...Ch. 7 - Prob. 139AECh. 7 - Prob. 140AECh. 7 - Prob. 141AECh. 7 - Will 0.10 M solutions of the following salts be...Ch. 7 - Prob. 143AECh. 7 - Prob. 144AECh. 7 - Prob. 145AECh. 7 - Prob. 146AECh. 7 - Prob. 147AECh. 7 - Prob. 148AECh. 7 - Prob. 149AECh. 7 - Prob. 150AECh. 7 - Prob. 151AECh. 7 - Prob. 152CPCh. 7 - Prob. 153CPCh. 7 - A typical solution of baking soda (sodium...Ch. 7 - Prob. 155CPCh. 7 - Prob. 156CPCh. 7 - Prob. 157CPCh. 7 - Prob. 158CPCh. 7 - Prob. 159CPCh. 7 - Prob. 160CPCh. 7 - Prob. 161CPCh. 7 - Prob. 162CPCh. 7 - Prob. 163CPCh. 7 - Prob. 164CPCh. 7 - Prob. 165CPCh. 7 - Prob. 166CPCh. 7 - Prob. 167CPCh. 7 - Prob. 168CPCh. 7 - Prob. 169MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- What would be the best choices for the missing reagents 1 and 3 in this synthesis? 1 1. PPh3 2. n-BuLi 3 2 • Draw the missing reagents in the drawing area below. You can draw them in any arrangement you like. • Do not draw the missing reagent 2. If you draw 1 correctly, we'll know what it is. • Note: if one of your reagents needs to contain a halogen, use bromine. Click and drag to start drawing a structure. Xarrow_forwardWhat is the missing reactant R in this organic reaction? N N H3O+ +R + • Draw the structure of R in the drawing area below. • Be sure to use wedge and dash bonds if it's necessary to draw one particular enantiomer. Click and drag to start drawing a structure. fmarrow_forwardThe product on the right-hand side of this reaction can be prepared from two organic reactants, under the conditions shown above and below the arrow. Draw 1 and 2 below, in any arrangement you like. 1+2 NaBH3CN H+ N Click and drag to start drawing a structure. 5arrow_forward
- Assign this HSQC Spectrum ( please editing clearly on the image)arrow_forward(a 4 shows scanning electron microscope (SEM) images of extruded actions of packing bed for two capillary columns of different diameters, al 750 (bottom image) and b) 30-μm-i.d. Both columns are packed with the same stationary phase, spherical particles with 1-um diameter. A) When the columns were prepared, the figure shows that the column with the larger diameter has more packing irregularities. Explain this observation. B) Predict what affect this should have on band broadening and discuss your prediction using the van Deemter terms. C) Does this figure support your explanations in application question 33? Explain why or why not and make any changes in your answers in light of this figure. Figure 4 SEM images of sections of packed columns for a) 750 and b) 30-um-i.d. capillary columns.³arrow_forwardfcrip = ↓ bandwidth Il temp 32. What impact (increase, decrease, or no change) does each of the following conditions have on the individual components of the van Deemter equation and consequently, band broadening? Increase temperature Longer column Using a gas mobile phase instead of liquid Smaller particle stationary phase Multiple Paths Diffusion Mass Transferarrow_forward
- 34. Figure 3 shows Van Deemter plots for a solute molecule using different column inner diameters (i.d.). A) Predict whether decreasing the column inner diameters increase or decrease bandwidth. B) Predict which van Deemter equation coefficient (A, B, or C) has the greatest effect on increasing or decreasing bandwidth as a function of i.d. and justify your answer. Figure 3 Van Deemter plots for hydroquinone using different column inner diameters (i.d. in μm). The data was obtained from liquid chromatography experiments using fused-silica capillary columns packed with 1.0-μm particles. 35 20 H(um) 큰 20 15 90 0+ 1500 100 75 550 01 02 594 05 μ(cm/sec) 30 15 10arrow_forwardelow are experimentally determined van Deemter plots of column efficiency, H, vs. flow rate. H is a quantitative measurement of band broadening. The left plot is for a liquid chromatography application and the night is for gas chromatography. Compare and contrast these two plots in terms of the three band broadening mechanisms presented in this activity. How are they similar? How do they differ? Justify your answers.? 0.4 H (mm) 0.2 0.1- 0.3- 0 0.5 H (mm) 8.0 7.0 6.0 5.0 4.0- 3.0 T +++ 1.0 1.5 0 2.0 4.0 Flow Rate, u (cm/s) 6.0 8.0 Flow Rate, u (cm/s)arrow_forwardPredict the products of this organic reaction: + H ZH NaBH3CN H+ n. ? Click and drag to start drawing a structure. Xarrow_forward
- What is the missing reactant R in this organic reaction? + R H3O+ + • Draw the structure of R in the drawing area below. • Be sure to use wedge and dash bonds if it's necessary to draw one particular enantiomer. Click and drag to start drawing a structure.arrow_forwardWhat would be the best choices for the missing reagents 1 and 3 in this synthesis? 1 1. PPh3 2. n-BuLi 2 • Draw the missing reagents in the drawing area below. You can draw them in any arrangement you like. • Do not draw the missing reagent 2. If you draw 1 correctly, we'll know what it is. • Note: if one of your reagents needs to contain a halogen, use bromine. Click and drag to start drawing a structure.arrow_forwardThe product on the right-hand side of this reaction can be prepared from two organic reactants, under the conditions shown above and below the arrow. Draw 1 and 2 below, in any arrangement you like. 1+2 NaBH₂CN H+ N Click and drag to start drawing a structure. X $arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning

Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning

Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning

Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning

Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning

General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning

Introductory Chemistry: A Foundation
Chemistry
ISBN:9781285199030
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY