![EBK PHYSICS](https://www.bartleby.com/isbn_cover_images/8220103026918/8220103026918_largeCoverImage.jpg)
EBK PHYSICS
5th Edition
ISBN: 8220103026918
Author: Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 63GP
A 1300-kg elevator is lifted at a constant speed of 1.3 m/s through a height of 22 in. How much work is done (a) by the tension in the elevator cable and (b) by gravity?
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
A ball is thrown with an initial speed v, at an angle 6, with the horizontal. The horizontal range of the ball is R, and the ball reaches a maximum height R/4. In terms of R and g, find the following.
(a) the time interval during which the ball is in motion
2R
(b) the ball's speed at the peak of its path
v=
Rg 2
√ sin 26, V 3
(c) the initial vertical component of its velocity
Rg
sin ei
sin 20
(d) its initial speed
Rg
√ sin 20
×
(e) the angle 6, expressed in terms of arctan of a fraction.
1
(f) Suppose the ball is thrown at the same initial speed found in (d) but at the angle appropriate for reaching the greatest height that it can. Find this height.
hmax
R2
(g) Suppose the ball is thrown at the same initial speed but at the angle for greatest possible range. Find this maximum horizontal range.
Xmax
R√3
2
An outfielder throws a baseball to his catcher in an attempt to throw out a runner at home plate. The ball bounces once before reaching the catcher. Assume the angle at which the bounced ball leaves the ground is the same as the angle at which the outfielder threw it as shown in the figure, but that the ball's speed after the bounce is one-half of what it was before the bounce.
8
(a) Assuming the ball is always thrown with the same initial speed, at what angle & should the fielder throw the ball to make it go the same distance D with one bounce (blue path) as a ball thrown upward at 35.0° with no bounce (green path)?
24
(b) Determine the ratio of the time interval for the one-bounce throw to the flight time for the no-bounce throw.
Cone-bounce
no-bounce
0.940
A rocket is launched at an angle of 60.0° above the horizontal with an initial speed of 97 m/s. The rocket moves for 3.00 s along its initial line of motion with an acceleration of 28.0 m/s². At this time, its engines fail and the rocket proceeds to move as a projectile.
(a) Find the maximum altitude reached by the rocket.
1445.46
Your response differs from the correct answer by more than 10%. Double check your calculations. m
(b) Find its total time of flight.
36.16
x
Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. s
(c) Find its horizontal range.
1753.12
×
Your response differs from the correct answer by more than 10%. Double check your calculations. m
Chapter 7 Solutions
EBK PHYSICS
Ch. 7.1 - Enhance Your Understanding (Answers given at the...Ch. 7.2 - Enhance Your Understanding (Answers given at the...Ch. 7.3 - As an object moves along the positive x axis the...Ch. 7.4 - Enhance Your Understanding (Answers given at the...Ch. 7 - Is it possible to do work on an object that...Ch. 7 - A friend makes the statement, Only the total force...Ch. 7 - A friend makes the statement, A force that is...Ch. 7 - The net work done on a certain object is zero What...Ch. 7 - Give an example of a frictional force doing...Ch. 7 - A ski boat moves with constant velocity Is the net...
Ch. 7 - A package rests on the floor of an elevator that...Ch. 7 - An object moves with constant velocity Is it safe...Ch. 7 - Engine 1 does twice the work of engine 2. Is it...Ch. 7 - Engine 1 produces twice the power of engine 2. Is...Ch. 7 - A pendulum bob swings from point I to point II...Ch. 7 - A pendulum bob swings from point II to point III...Ch. 7 - A farmhand pushes a 26-kg bale of hay 3.9 m across...Ch. 7 - Children in a tree house lift a small dog in a...Ch. 7 - Early one October, you go to a pumpkin patch to...Ch. 7 - The coefficient of kinetic friction between a...Ch. 7 - BIO Peristaltic Work The human snail intestine...Ch. 7 - Predict/Calculate A tow rope, parallel to the...Ch. 7 - A child pulls a friend in a little red wagon with...Ch. 7 - A 57-kg packing crate is pulled with constant...Ch. 7 - Predict/Calculate To clean a floor, a janitor...Ch. 7 - A small plane tows a glider at constant speed and...Ch. 7 - As a snowboarder descends a mountain slope,...Ch. 7 - A young woman on a skateboard is pulled by a rope...Ch. 7 - To keep her dog from running away while she talks...Ch. 7 - Water skiers often ride to one side of the center...Ch. 7 - A pitcher throws a ball at 90 mi/h and the catcher...Ch. 7 - How much work is needed for a 73 kg runner to...Ch. 7 - Skylabs Reentry When Skylab reentered the Earths...Ch. 7 - Predict/Calculate A 9.50-g bullet has a speed of...Ch. 7 - The energy required to increase the speed of a...Ch. 7 - Predict/Explain The work W0 accelerates a car...Ch. 7 - Car A has a mass m and a speed u, car B has a mass...Ch. 7 - Predict/Calculate A 0.14-kg pinecone falls 16 m to...Ch. 7 - In the previous problem (a) how much work was done...Ch. 7 - At t = 1.0s, a 0.55-kg object is tailing with a...Ch. 7 - After hitting a long fly ball that goes over the...Ch. 7 - Predict/Calculate A 1100-kg car coasts on a...Ch. 7 - A 65-kg bicyclist rides his 8 8-kg bicycle with a...Ch. 7 - A block of mass m and speed U collides with a...Ch. 7 - A spring with a force constant of 3.5 104 N/m is...Ch. 7 - Initially sliding with a speed of 4.1 m/s, a...Ch. 7 - The force shown in Figure 7-21 moves an object...Ch. 7 - An object is acted on by the force shown in Figure...Ch. 7 - To compress spring 1 by 0 20 m takes 150 J of...Ch. 7 - Predict/Calculate It takes 180 J of work to...Ch. 7 - The force shown in Figure 7-22 acts on a 1.3-kg...Ch. 7 - A block is acted on by a force that varies as (2.0...Ch. 7 - Section 7-4 Power 42 CE Fore F1 does 5 J of work...Ch. 7 - BIO Climbing the Empire State Building A new...Ch. 7 - Calculate the power output of a 14-mg fly as it...Ch. 7 - An ice cube is placed in a microwave oven. Suppose...Ch. 7 - Your car produces about 34 kw of power to maintain...Ch. 7 - You raise a bucket of water from the bottom of a...Ch. 7 - BIO Salmon Migration As Chinook salmon swim...Ch. 7 - In order to keep a leaking ship from sinking, it...Ch. 7 - Predict/Calculate A kayaker paddles with a power...Ch. 7 - BIO Human-Powered Flight Human-powered aircraft...Ch. 7 - Predict/Calculate Beating to Windward A sailboat...Ch. 7 - Predict/Calculate A grandfather clock is powered...Ch. 7 - Prob. 54PCECh. 7 - CE As the three small sailboats shown in Figure...Ch. 7 - CE Predict/Explain A car is accelerated by a...Ch. 7 - CE Car 1 has four limes the mass of car 2, but...Ch. 7 - BIO Muscle Cells Biological muscle cells can be...Ch. 7 - A small motor runs a lift that raises a load of...Ch. 7 - You push a 67-kg box across a door where the...Ch. 7 - A 1300-kg elevator is lifted at a constant speed...Ch. 7 - CE The work W0 is required to accelerate a car...Ch. 7 - After a tornado a 0.55-g straw was found embedded...Ch. 7 - You throw a glove straight upward to celebrate a...Ch. 7 - The water skier in Figure 7-20 is at an angle of...Ch. 7 - Predict/Calculate A sled with a mass of 5.80 kg is...Ch. 7 - Predict/Calculate A 0.19-kg apple falls from a...Ch. 7 - A boy pulls a bag of baseball bats across a ball...Ch. 7 - At the instant it leaves the players hand after a...Ch. 7 - The force shown in Figure 7-25 acts on an object...Ch. 7 - A Compound Bow A compound bow in archery allows...Ch. 7 - A Compound Versus a Simple Bow The compound bow in...Ch. 7 - Calculate the power output of a 0.42-g spider as...Ch. 7 - Cookie Power To make a batch of cookies, you mix...Ch. 7 - Predict/Calculate A pitcher accelerates a 0.14-kg...Ch. 7 - BIO Brain Power The human brain consumes about 22...Ch. 7 - Meteorite On October 9, 1992, a 27-pound meteorite...Ch. 7 - BIO Powering a Pigeon A pigeon in flight...Ch. 7 - Springs in Series Two springs, with force...Ch. 7 - Springs in Parallel Two springs, with force...Ch. 7 - A block rests on a horizontal frictionless...Ch. 7 - BIO Microraptor gui: The Biplane Dinosaur The...Ch. 7 - BIO Microraptor gui: The Biplane Dinosaur The...Ch. 7 - BIO Microraptor gui: The Biplane Dinosaur The...Ch. 7 - BIO Microraptor gui: The Biplane Dinosaur The...Ch. 7 - Referring to Figure 7-15 Suppose the block has a...Ch. 7 - Predict/Calculate Referring to Figure 7-15 In the...Ch. 7 - Predict/Calculate Referring 10 Example 7-15...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
Albinism in humans is inherited as a simple recessive trait. For the following families, determine the genotype...
Concepts of Genetics (12th Edition)
The distances you obtained in Question 3 are for only one side of the ridge. Assuming that a ridge spreads equa...
Applications and Investigations in Earth Science (9th Edition)
1.1 Write a one-sentence definition for each of the following:
a. chemistry
b. chemical
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Thiols such as ethanethiol and propanethiol can be used to reduce vitamin K epoxide to vitamin KH2, but they re...
Organic Chemistry (8th Edition)
What are four functions of connective tissue?
Anatomy & Physiology (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Race car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? Please answer parts a-B. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places. DONT FORGET TO DRAW VECTORS! ONLY USE BASIC FORMULAS TAUGHT IN PHYSICS. distance = speed * time.arrow_forwardRace car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? c) If the driver’s average rate of acceleration is -9.5 m/s2 as he slows down, how long does it take him to come to a stop (use information about his speed of 28.9 m/s but do NOT use his reaction and movement time in this computation)? Please answer parts a-c. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.…arrow_forwardHow is it that part a is connected to part b? I can't seem to solve either part and don't see the connection between the two.arrow_forward
- Hello, please help with inputing trial one into the equation, I just need a model for the first one so I can answer the rest. Also, does my data have the correct sigfig? Thanks!arrow_forwardFind the current in the R₁ resistor in the drawing (V₁=16.0V, V2=23.0 V, V₂ = 16.0V, R₁ = 2005, R₂ = and R₂ = 2.705) 2.3052 VIT A www R www R₂ R₂ Vaarrow_forwardWhich of the following laws is true regarding tensile strength? • tensile strength T ①Fbreak = Wtfest Piece thickness rate (mm) ②T = test piece width rabe (mm) Fbreak break watarrow_forward
- No chatgpt plsarrow_forwardNo chatgpt plsarrow_forwardYou hold a spherical salad bowl 85 cm in front of your face with the bottom of the bowl facing you. The salad bowl is made of polished metal with a 40 cm radius of curvature. Where is the image of your 2.0 cm tall nose located? What is image's size, orientation, and nature. I keep getting the answer -26.2, but it keeps saying it is wrong. I just want to know what i'm doing wrong.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078807213/9780078807213_smallCoverImage.gif)
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168277/9781938168277_smallCoverImage.gif)
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168000/9781938168000_smallCoverImage.gif)
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY