Interpretation:
The reason corresponding to the formation of products in each of the given reactions is to be explained.
Concept Introduction:
▸ The molecules which are non-superimposable or not identical with their mirror images are known as chiral molecules.
▸ A pair of two mirror images which are non-identical is known as enantiomers which are optically active.
▸ The objects or molecules which are superimposable with their mirror images are achiral objects or molecules and these objects have a centre of symmetry or plane of symmetry.
▸ The achiral compounds in which plane of symmetry is present internally and consists of chiral centres are known as meso compounds but they are optically inactive.
▸ The stereoisomers which are non-superimposable on each other and not mirror images of each other are known as diastereomers.
▸ Chiral molecules are capable of rotating plane polarized light
▸ The molecules which are superimposable or identical with their mirror images are known as achiral molecules, and achiral molecules are not capable of rotating the plane-polarised light.
▸ Priority is given to all the four group attached to the chirality center.
▸ Priority is assigned on the basis of the
▸ If priority cannot be assigned according to
▸ After assigning priority to the four groups, rotate the molecule such that fourth priority group is away from the observer.
▸ Now, move from a to b to c; if the direction is clockwise, then the chiral center designated as
▸
▸ Z-isomers have the high priority group on the same side of the double bond whereas E-isomers have the high priority group on the opposite side of the double bond.
▸ In
▸ In alkenes, if the higher priority group on both the carbon is on the opposite side, configuration is termed as E-configuration.
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
Organic Chemistry
- Correctly name this compound using the IUPAC naming system by sorting the components into the correct order. Br IN Ν Harrow_forwardHow is the radical intermediate for this structure formed? Can you please draw arrows from the first radical to the resonance form that would result in this product? I'm lost.arrow_forwardPart VI. (a) calculate the λ max of the compound using woodward - Fieser rules. (b) what types of electronic transitions are present in the compound? (c) what are the prominent peaks in the IR spectrum of the compound?arrow_forward
- Don't used Ai solutionarrow_forwardPlease correct answer and don't used hand raitingarrow_forward↑ 0 Quiz List - RCC430M_RU05 X Aktiv Learning App × Qdraw resonance structure ×Q draw resonance structure xb My Questions | bartleby ×+ https://app.aktiv.com Draw a resonance structure of pyrrole that has the same number of pi bonds as the original structure. Include all lone pairs in your structure. + N H a 5 19°F Cloudy Q Search Problem 12 of 15 Atoms, Bonds and Rings Charges and Lone Pairs myhp हजु Undo Reset Remove Done Submit Drag To Pan 2:15 PM 1/25/2025arrow_forward