Physics for Science and Engineering With Modern Physics, VI - Student Study Guide
4th Edition
ISBN: 9780132273244
Author: Doug Giancoli
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 7, Problem 59P
(II) A 1200-kg car rolling on a horizontal surface has speed
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
#39
Answer detailly 7(ii)
18) A ball has a mass of 3 kg. It is connected to a
spring that is displaced x = 0.5m
away from its equilibrium length. The spring has spring
%3D
constant k = 300N/m. Af-
%3D
ter the spring is compressed, the ball rolls along a
frictionless surface until it reaches
an incline with an angle of 30•. What is the maximum
height the ball reaches?
Chapter 7 Solutions
Physics for Science and Engineering With Modern Physics, VI - Student Study Guide
Ch. 7.1 - A box is dragged a distance d across a floor by a...Ch. 7.1 - Return to the Chapter-Opening Question, page 163,...Ch. 7.4 - (a) Make a guess: will the work needed to...Ch. 7.4 - Can kinetic energy ever be negative?Ch. 7.4 - Prob. 1EECh. 7 - In what ways is the word work as used in everyday...Ch. 7 - A woman swimming upstream is not moving with...Ch. 7 - Can a centripetal force ever do work on an object?...Ch. 7 - Why is it tiring to push hard against a solid wall...Ch. 7 - Does the scalar product of two vectors depend on...
Ch. 7 - Can a dot product ever he negative? If yes, under...Ch. 7 - Prob. 7QCh. 7 - Does the dot product of two vectors have direction...Ch. 7 - Can the normal force on an object ever do work?...Ch. 7 - You have two springs that are identical except...Ch. 7 - Prob. 11QCh. 7 - In Example 710, it was stated that the block...Ch. 7 - Two bullets are fired at the same time with the...Ch. 7 - Does the net work done on a particle depend on the...Ch. 7 - A hand exerts a constant horizontal force on a...Ch. 7 - (I) How much work is done by the gravitational...Ch. 7 - (I) How high will a 1.85-kg rock go if thrown...Ch. 7 - (I) A 75.0-kg firefighter climbs a flight of...Ch. 7 - (I) A hammerhead with a mass of 2.0 kg is allowed...Ch. 7 - (II) Estimate the work you do to mow a lawn 10 m...Ch. 7 - (II) A lever such as that shown in Fig. 720 can be...Ch. 7 - (II) What is the minimum work needed to push a...Ch. 7 - (II) Eight books, each 4.0cm thick with mass 1.8...Ch. 7 - (II) A box of mass 6.0 kg is accelerated from rest...Ch. 7 - (II) (a) What magnitude force is required to give...Ch. 7 - (II) A 380-kg piano slides 3.9m down a 27 incline...Ch. 7 - (II) A gondola can carry 20 skiers, with a total...Ch. 7 - (II) A 17,000-kg jet takes off from an aircraft...Ch. 7 - (II) A 2200-N crate rests on the floor. How much...Ch. 7 - (II) A grocery cart with mass of 16 kg is being...Ch. 7 - (I) What is the dot product of...Ch. 7 - (I) For any vector V=Vxi+Vyj+Vzk show that...Ch. 7 - (I) Calculate the angle between the vectors:...Ch. 7 - Prob. 19PCh. 7 - (I) Vector V1 points along the z axis and has...Ch. 7 - (II) Given the vector A=3.0i+1.5j, find a vector...Ch. 7 - (II) A constant force F=(2.0i+4.0j)N acts on an...Ch. 7 - (II) If A=9.0i8.5j,B=8.0i+7.1j+4.2k,and...Ch. 7 - (II) Prove that AB=AxBx+AyBy+AzBz, starting from...Ch. 7 - (II) Given vectors A=4.8i+6.8jandB=9.6i+6.7j,...Ch. 7 - (II) Show that if two nonparallel vectors have the...Ch. 7 - (II) Let V=20.0i+22.0j14.0k. What angles does this...Ch. 7 - (II) Use the scalar product to prove the law of...Ch. 7 - (II) Vectors A and B are in the xy plane and their...Ch. 7 - (II) A and B are two vectors in the xy plane that...Ch. 7 - (II) Suppose A=1.0i+1.0j2.0k and B=1.0i+1.0j+2.0k,...Ch. 7 - (II) Find a vector of unit length in the xy plane...Ch. 7 - (III) Show that the scalar product of two vectors...Ch. 7 - (I) In pedaling a bicycle uphill, a cyclist exerts...Ch. 7 - (II) A spring has k = 65N/m. Draw a graph like...Ch. 7 - (II) If the hill in Example 72 (Fig. 74) was not...Ch. 7 - (II) The net force exerted on a particle acts in...Ch. 7 - (II) If it requires 5.0 J of work to stretch a...Ch. 7 - (II) In Fig. 79 assume the distance axis is the x...Ch. 7 - (II) The force on a particle, acting along the x...Ch. 7 - (II) A child is pulling a wagon down the sidewalk....Ch. 7 - (II) The resistance of a packing material to a...Ch. 7 - (II) The force needed to hold a particular spring...Ch. 7 - (II) At the top of a pole vault, and athlete...Ch. 7 - (II) Consider a force F1=A/xwhich acts on an...Ch. 7 - (II) Assume that a force acting on an object is...Ch. 7 - (II) An object, moving along the circumference of...Ch. 7 - (III) A 2800-kg space vehicle, initially at rest,...Ch. 7 - (III) A 3.0-m-long steel chain is stretched out...Ch. 7 - (I) At room temperature, an oxygen molecule, with...Ch. 7 - (I) (a) If the kinetic energy of a particle is...Ch. 7 - (I) How much work is required to stop an electron...Ch. 7 - (I) How much work must be done to stop a 1300-kg...Ch. 7 - (II) Spiderman uses his spider webs to save a...Ch. 7 - (II) A baseball (m=145g) traveling 32mA moves a...Ch. 7 - (II) An 85-g arrow is fired from a bow whose...Ch. 7 - (II) A mass m is attached to a spring which is...Ch. 7 - (II) If the speed of a car is increased by 50%, by...Ch. 7 - (II) A 1200-kg car rolling on a horizontal surface...Ch. 7 - (II) One car has twice the mass of a second car,...Ch. 7 - (II) A 4.5-kg object moving in two dimensions...Ch. 7 - (II) A 265-kg load is lifted 23.0m vertically with...Ch. 7 - (II) (a) How much work is done by the horizontal...Ch. 7 - (II) (a) How much work is done by the horizontal...Ch. 7 - (II) At an accident scene on a level road,...Ch. 7 - (II) A 46.0-kg crate, starting from rest, is...Ch. 7 - (II) A train is moving along a track with constant...Ch. 7 - (III) We usually neglect the mass of a spring if...Ch. 7 - (III) An elevator cable breaks when a 925-kg...Ch. 7 - (a) A 3.0-g locust reaches a speed of 3.0m/s...Ch. 7 - In a certain library the first shelf is 12.0 cm...Ch. 7 - A 75-kg meteorite buries itself 5.0 m into soft...Ch. 7 - A 6.10-kg block is pushed 9.25 m up a smooth 37.0...Ch. 7 - Prob. 74GPCh. 7 - Two forces, F1=(1.50i0.80j+0.70k)Nand...Ch. 7 - The barrels of the 16-in, guns (bore diameter = 16...Ch. 7 - A varying force is given by F = Aekx, where x is...Ch. 7 - The force required to compress an imperfect...Ch. 7 - A force F=(10.0i+9.0j+12.0k)kNacts on a small...Ch. 7 - In the game of paintball, players use guns powered...Ch. 7 - A softball having a mass of 0.25 kg is pitched...Ch. 7 - An airplane pilot fell 370 m after jumping from an...Ch. 7 - Many cars have 5 mi/h (8 km/h) bumpers that are...Ch. 7 - What should be the spring constant k of a spring...Ch. 7 - Assume a cyclist of weight mg can exert a force on...Ch. 7 - A simple pendulum consists of a small object of...Ch. 7 - A car passenger buckles himself in with a seat...Ch. 7 - As an object moves along the x axis from x = 0.0 m...Ch. 7 - A cyclist starts from rest and coasts down a 4.0...Ch. 7 - Stretchable ropes ate used to safely arrest the...Ch. 7 - A small mass m hangs at rest from a vertical rope...Ch. 7 - (II) The net force along the linear path of a...Ch. 7 - (II) When different masses are suspended from a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
How Would the experiments result charge if oxygen (O2) were induced in the spark chamber?
Biology: Life on Earth with Physiology (11th Edition)
All of the following processes are involved in the carbon cycle except: a. photosynthesis b. cell respiration c...
Human Biology: Concepts and Current Issues (8th Edition)
Questions 25 through 27 concern a classic figure-skating jump called the axel. A skater starts the jump moving ...
College Physics: A Strategic Approach (3rd Edition)
SCIENTIFIC INQUIRY DRAW IT As a consequence of size alone, larger organisms tend to have larger brains than sm...
Campbell Biology (11th Edition)
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology with Physiology (5th Edition)
In your own words, briefly distinguish between relative dates and numerical dates.
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A block of mass 0.250 kg is placed on top of a light, vertical spring of force constant 5 000 N/m and pushed downward so that the spring is compressed by 0.100 m. After the block is released from rest, it travels upward and then leaves the spring. To what maximum height above the point of release does it rise?arrow_forwardA block of mass 0.500 kg is pushed against a horizontal spring of negligible mass until the spring is compressed a distance x (Fig. P7.79). The force constant of the spring is 450 N/m. When it is released, the block travels along a frictionless, horizontal surface to point , the bottom of a vertical circular track of radius R = 1.00 m, and continues to move up the track. The blocks speed at the bottom of the track is = 12.0 m/s, and the block experiences an average friction force of 7.00 N while sliding up the track. (a) What is x? (b) If the block were to reach the top of the track, what would be its speed at that point? (c) Does the block actually reach the top of the track, or does it fall off before reaching the top?arrow_forwardJane, whose mass is 50.0 kg, needs to swing across a river (having width D) filled with person-eating crocodiles to save Tarzan from danger. She must swing into a wind exerting constant horizontal force F, on a vine having length L and initially making an angle with the vertical (Fig. P7.81). Take D = 50.0 m, F = 110 N, L = 40.0 m, and = 50.0. (a) With what minimum speed must Jane begin her swing to just make it to the other side? (b) Once the rescue is complete, Tarzan and Jane must swing back across the river. With what minimum speed must they begin their swing? Assume Tarzan has a mass of 80.0 kg.arrow_forward
- When a 4.25-kg object is placed on top of a vertical spring, the spring compresses a distance of 2.62 cm. What is the force constant of the spring?arrow_forwardA pendulum, comprising a light string of length L and a small sphere, swings in the vertical plane. The string hits a peg located a distance d below the point of suspension (Fig. P7.80). (a) Show that if the sphere is released from a height below that of the peg, it will return to this height after the string strikes the peg. (b) Show that if the pendulum is released from rest at the horizontal position ( = 90) and is to swing in a complete circle centered on the peg, the minimum value of d must be 3L/5. Figure P7.80arrow_forwardA fellow student tells you that she has both zero kinetic energy and zero potential energy. Is this possible? Explain.arrow_forward
- A 6 000-kg freight car rolls along rails with negligible friction. The car is brought to rest by a combination of two coiled springs as illustrated in Figure P6.27 (page 188). Both springs are described by Hookes law and have spring constants k1 = 1 600 N/m and k2, = 3 400 N/m. After the first spring compresses a distance of 30.0 cm, the second spring acts with the first to increase the force as additional compression occurs as shown in the graph. The car comes to rest 50.0 cm after first contacting the two-spring system. Find the cars initial speed.arrow_forwardA bungee cord is essentially a very long rubber band that can stretch up to four times its unstretched length. However, its spring constant vanes over its stretch [see Menz, P.G. “The Physics of Bungee Jumping.” The Physics Teacher (November 1993) 31: 483-487]. Take the length of the cord to be along the direction and define the stretch as the length of the cord minus its un-stretched length that is, (see below). Suppose a particular bungee cord has a spring constant, for of and for. (Recall that the of (Recall that the spring constant is the slope of the force versus its stretch (a) What is the tension in the cord when the stretch is 16.7 m (the maximum desired for a given jump)? (b) How much work must be done against the elastic force of the bungee cord to stretch It 16.7 m? Figure 7.16 (credit modification of work by Graeme Churchard)arrow_forwardCheck Your Understanding What potential energy U(x) can you substitute in Equation 8.13 that will result in motion with constant velocity of 2 m/s for a particle of mass 1 kg and mechanical energy 1 J?arrow_forward
- A block of mass M rests on a table. It is fastened to the lower end of a light, vertical spring. The upper end of the spring is fastened to a block of mass m. The upper block is pushed down by an additional force 3mg, so the spring compression is 4mg/k. In this configuration, the upper block is released from rest. The spring lifts the lower block off the table. In terms of m, what is the greatest possible value for m?arrow_forwardA 75.0-kg firefighter slides down a pole while a constant friction force of 300 N retards her motion. A horizontal 20.0-kg platform is supported by a spring at the bottom of the pole to cushion the fall. The firefighter starts from rest 4.00 m above the platform, and the spring constant is 4 000 N/m. Find (a) the firefighters speed just before she collides with the platform and (b) the maximum distance the spring is compressed. Assume the friction force acts during the entire motion.arrow_forward(II) What should be the spring constant k of a spring designed to bring a 1200-kg car to rest from a speed of 95 km/h so that the occupants undergo a maximum acceleration of 4.0 g?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
8.01x - Lect 11 - Work, Kinetic & Potential Energy, Gravitation, Conservative Forces; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=9gUdDM6LZGo;License: Standard YouTube License, CC-BY