
(a)
Interpretation:
Given chemical equation should be balanced. Whether the equation can be classified as
Concept Introduction:
Balanced chemical equation gives the details about the identities of the reactants and products and also how much of each reactant and product participate in the reaction. The numbers in the balanced equation (coefficients) enable us to determine how much product we can get from a given quantity of reactants.
Normally the unbalanced equations are balanced by inspection starting with the most complicated molecule. We should determine what coefficient is necessary to equalize the number of each type of atoms on both side of the arrow. The coefficients used should be the smallest integers which balance the equation.
The driving force involved in oxidation- reduction reaction is transfer of electrons between atoms and ions. While one substance is oxidized by losing electrons, another species takes up that electron and get reduced.

Answer to Problem 20CR
This is not an oxidation reduction reaction.
Explanation of Solution
In this unbalanced equation number of NO3 - ions in reactants side is one and two in the product side. So we place 2 before HNO3. Then the number of H atoms also gets balanced. Other atoms present in the equation are already balanced. So the balanced equation is,
This is not an oxidation reduction reaction. Any of those atoms have not changed their oxidation state. They simply have exchanged their anions. So this is a double displacement reaction, as well as due to the formation of water. This is also an acid base reaction.
(b)
Interpretation:
Given chemical equation should be balanced. Whether the equation can be classified as oxidation-reduction reactions should be mentioned.
Concept Introduction:
Balanced chemical equation gives the details about the identities of the reactants and products and also how much of each reactant and product participate in the reaction. The numbers in the balanced equation (coefficients) enable us to determine how much product we can get from a given quantity of reactants.
Normally the unbalanced equations are balanced by inspection starting with the most complicated molecule. We should determine what coefficient is necessary to equalize the number of each type of atoms on both side of the arrow. The coefficients used should be the smallest integers which balance the equation.
The driving force involved in oxidation- reduction reaction is transfer of electrons between atoms and ions. While one substance is oxidized by losing electrons, another species takes up that electron and get reduced.

Answer to Problem 20CR
This is an oxidation reduction reaction.
Explanation of Solution
There are four O atoms in the reactants side but only three in products side. In order to make the numbers equal in both sides, we place 2 before CO2 and MgCO3. Then number of Mg atom in the products side becomes two. Therefore we place 2 before Mg. So the balanced equation is,
Mg has oxidized from 0 oxidation state to + 2 oxidation state. O2 has reduced from its 0 oxidation state to -2 oxidation state. So this is an oxidation reduction reaction.
(c)
Interpretation:
Given chemical equation should be balanced. Whether the equation can be classified as oxidation-reduction reactions should be mentioned.
Concept Introduction:
Balanced chemical equation gives the details about the identities of the reactants and products and also how much of each reactant and product participate in the reaction. The numbers in the balanced equation (coefficients) enable us to determine how much product we can get from a given quantity of reactants.
Normally the unbalanced equations are balanced by inspection starting with the most complicated molecule. We should determine what coefficient is necessary to equalize the number of each type of atoms on both side of the arrow. The coefficients used should be the smallest integers which balance the equation.
The driving force involved in oxidation- reduction reaction is transfer of electrons between atoms and ions. While one substance is oxidized by losing electrons, another species takes up that electron and get reduced.

Answer to Problem 20CR
This is not an oxidation reduction reaction.
Explanation of Solution
In the unbalanced equation, number of Na atoms in reactants side is one and in products side it’s two. So we place 2 before NaOH. Then the number of OH- ions in both sides becomes equal. Other atoms present in the equation are already balanced. So the balanced equation is,
This is not an oxidation reduction reaction as any atom does not change their oxidation state. This is a precipitation reaction as well as a double displacement reaction since the two compounds have simply exchanged their anions.
(d)
Interpretation:
Given chemical equation should be balanced. Whether the equation can be classified as oxidation-reduction reactions should be mentioned.
Concept Introduction:
Balanced chemical equation gives the details about the identities of the reactants and products and also how much of each reactant and product participate in the reaction. The numbers in the balanced equation (coefficients) enable us to determine how much product we can get from a given quantity of reactants.
Normally the unbalanced equations are balanced by inspection starting with the most complicated molecule. We should determine what coefficient is necessary to equalize the number of each type of atoms on both side of the arrow. The coefficients used should be the smallest integers which balance the equation.
The driving force involved in oxidation- reduction reaction is transfer of electrons between atoms and ions. While one substance is oxidized by losing electrons, another species takes up that electron and get reduced.

Answer to Problem 20CR
This is not an oxidation reduction reaction.
Explanation of Solution
The equation is already balanced. And this is not an oxidation reduction reaction as any atom in the equation does not change their oxidation states. This is an acid base reaction as well as a double displacement reaction, since the two reactants have simply exchanged their anions.
(e)
Interpretation:
Given chemical equation should be balanced. Whether the equation can be classified as oxidation-reduction reactions should be mentioned.
Concept Introduction:
Balanced chemical equation gives the details about the identities of the reactants and products and also how much of each reactant and product participate in the reaction. The numbers in the balanced equation (coefficients) enable us to determine how much product we can get from a given quantity of reactants.
Normally the unbalanced equations are balanced by inspection starting with the most complicated molecule. We should determine what coefficient is necessary to equalize the number of each type of atoms on both side of the arrow. The coefficients used should be the smallest integers which balance the equation.
The driving force involved in oxidation- reduction reaction is transfer of electrons between atoms and ions. While one substance is oxidized by losing electrons, another species takes up that electron and get reduced.

Answer to Problem 20CR
This is an oxidation reduction reaction.
Explanation of Solution
In the unbalanced equation, number of C in reactants side is three but one in products side. So we place 3 before CO2. Number of H atoms in reactants side is eight, but only two in the products side. So we place 4 before H2 O. But then the number of O in the products side becomes 10, but there are only two in the reactants side. So we place 5 before O2. So the balanced equation is,
This is an oxidation reduction reaction. O2 is present as a reactant in this equation. If a non metal reacts with oxygen it is a sign of oxidation reduction reaction. Here the hydrocarbon is oxidized and Oxygen is reduced.
(f)
Interpretation:
Given chemical equation should be balanced. Whether the equation can be classified as oxidation-reduction reactions should be mentioned.
Concept Introduction:
Balanced chemical equation gives the details about the identities of the reactants and products and also how much of each reactant and product participate in the reaction. The numbers in the balanced equation (coefficients) enable us to determine how much product we can get from a given quantity of reactants.
Normally the unbalanced equations are balanced by inspection starting with the most complicated molecule. We should determine what coefficient is necessary to equalize the number of each type of atoms on both side of the arrow. The coefficients used should be the smallest integers which balance the equation.
The driving force involved in oxidation- reduction reaction is transfer of electrons between atoms and ions. While one substance is oxidized by losing electrons, another species takes up that electron and get reduced.

Answer to Problem 20CR
This is not an oxidation-reduction reaction.
Explanation of Solution
In the unbalanced equation, number of NH3 ligand in reactants side is six but one in products side. So we place 6 before NH3. All the other atoms in the equation are already balanced. So the balanced equation is,
This is not an oxidation reduction reaction as any atom in the equation does not change its oxidation state. This is a decomposition reaction.
(g)
Interpretation:
Given chemical equation should be balanced. Whether the equation can be classified as oxidation-reduction reactions should be mentioned.
Concept Introduction:
Balanced chemical equation gives the details about the identities of the reactants and products and also how much of each reactant and product participate in the reaction. The numbers in the balanced equation (coefficients) enable us to determine how much product we can get from a given quantity of reactants.
Normally the unbalanced equations are balanced by inspection starting with the most complicated molecule. We should determine what coefficient is necessary to equalize the number of each type of atoms on both side of the arrow. The coefficients used should be the smallest integers which balance the equation.
The driving force involved in oxidation- reduction reaction is transfer of electrons between atoms and ions. While one substance is oxidized by losing electrons, another species takes up that electron and get reduced.

Answer to Problem 20CR
This is not an oxidation reduction reaction.
Explanation of Solution
In the unbalanced equation, number of C2 H3 O2 - ligand in the reactants side is two and one in the products side. So we place 2 before HC2 H3 O2. And the number of Cl atoms in reactants side is one but it is two in the product side. So we place 2 before HCl. Then all the other atoms become balanced. So the balanced equation is,
This is not an oxidation reduction reaction as any atom does not change their oxidation states. This is a precipitation reaction as well as a double displacement reaction, since the two reactants have exchanged their anions.
(h)
Interpretation:
Given chemical equation should be balanced. Whether the equation can be classified as oxidation-reduction reactions should be mentioned.
Concept Introduction:
Balanced chemical equation gives the details about the identities of the reactants and products and also how much of each reactant and product participate in the reaction. The numbers in the balanced equation (coefficients) enable us to determine how much product we can get from a given quantity of reactants.
Normally the unbalanced equations are balanced by inspection starting with the most complicated molecule. We should determine what coefficient is necessary to equalize the number of each type of atoms on both side of the arrow. The coefficients used should be the smallest integers which balance the equation.
The driving force involved in oxidation- reduction reaction is transfer of electrons between atoms and ions. While one substance is oxidized by losing electrons, another species takes up that electron and get reduced.

Answer to Problem 20CR
This is an oxidation reduction reaction.
Explanation of Solution
In the unbalanced equation, number of C atoms in the reactants side is twelve but in the products side it is one. So we place 12 before C. Number of H atoms in the reactants side is 22, but in the products side it is two. So we place 11 before H2 O. Then the number of O atoms also becomes equal in both sides. So the balanced equation is,
This is an oxidation reduction reaction. C in C1 2 H2 2 O1 1 is reduced into C. And H in C1 2 H2 2 O1 1 has oxidized into H2 O. This is also a decomposition reaction.
(i)
Interpretation:
Given chemical equation should be balanced. Whether the equation can be classified as oxidation-reduction reactions should be mentioned.
Concept Introduction:
Balanced chemical equation gives the details about the identities of the reactants and products and also how much of each reactant and product participate in the reaction. The numbers in the balanced equation (coefficients) enable us to determine how much product we can get from a given quantity of reactants.
Normally the unbalanced equations are balanced by inspection starting with the most complicated molecule. We should determine what coefficient is necessary to equalize the number of each type of atoms on both side of the arrow. The coefficients used should be the smallest integers which balance the equation.
The driving force involved in oxidation- reduction reaction is transfer of electrons between atoms and ions. While one substance is oxidized by losing electrons, another species takes up that electron and get reduced.

Answer to Problem 20CR
This is an oxidation reduction reaction.
Explanation of Solution
In the unbalanced equation, number of NO3 - ions in the reactants side is one but in the products side it is three. So we place 3 before HNO3. Then the number of H atoms in the reactants side becomes three, but in the products side it is two. So we place 6 before HNO3 and 3 before H2. Then the number of NO3 - ions becomes six in the reactants side. So we place 2 before Al(NO3 )3. Then number of Al atoms in the products side becomes two. So we place 2 before Al. finally the balanced equation is,
This is an oxidation reduction reaction. Al has oxidized form its 0 oxidation state to + 3 oxidation state and H has reduced from + 1 oxidation state into 0 oxidation state. This is also a single displacement reaction, since only H is displaced by Al in this reaction.
(j)
Interpretation:
Given chemical equation should be balanced. Whether the equation can be classified as oxidation-reduction reactions should be mentioned.
Concept Introduction:
Balanced chemical equation gives the details about the identities of the reactants and products and also how much of each reactant and product participate in the reaction. The numbers in the balanced equation (coefficients) enable us to determine how much product we can get from a given quantity of reactants.
Normally the unbalanced equations are balanced by inspection starting with the most complicated molecule. We should determine what coefficient is necessary to equalize the number of each type of atoms on both side of the arrow. The coefficients used should be the smallest integers which balance the equation.
The driving force involved in oxidation- reduction reaction is transfer of electrons between atoms and ions. While one substance is oxidized by losing electrons, another species takes up that electron and get reduced.

Answer to Problem 20CR
This is an oxidation reduction reaction.
Explanation of Solution
In the unbalanced equation, number of O atoms in the reactants side is two but in the products side it is three. So we place 3 before O2 and 2 before B2 O3. Then the number of B atoms in the products side becomes four. So we place 4 before B. So the balanced equation is,
This is an oxidation reduction reaction. B has oxidized from 0 oxidation state to + 3 oxidation state and O has reduced from 0 oxidation state to -2 oxidation state. This is also a synthesis reaction, since all the reactants are natural state elements forming B2 O3.
Want to see more full solutions like this?
Chapter 7 Solutions
Introductory Chemistry: A Foundation
- Using reaction free energy to predict equilibrium composition Consider the following equilibrium: N2O4 (g) 2NO2 (g) AG⁰ = 5.4 kJ Now suppose a reaction vessel is filled with 1.68 atm of dinitrogen tetroxide (N204) at 148. °C. Answer the following questions about this system: rise Under these conditions, will the pressure of N2O4 tend to rise or fall? x10 fall Is it possible to reverse this tendency by adding NO2? In other words, if you said the pressure of N2O4 will tend to rise, can that be changed to a tendency to fall by adding NO2? Similarly, if you said the pressure of N2O4 will tend to fall, can that be changed to a tendency to rise by adding NO2? If you said the tendency can be reversed in the second question, calculate the minimum pressure of NO 2 needed to reverse it. Round your answer to 2 significant digits. yes no 0.42 atm ☑ 5 0/5 ? مله Ararrow_forwardHomework 13 (Ch17) Question 4 of 4 (1 point) | Question Attempt: 2 of 2 ✓ 1 ✓ 2 = 3 4 Time Remaining: 4:25:54 Using the thermodynamic information in the ALEKS Data tab, calculate the standard reaction free energy of the following chemical reaction: 2CH3OH (g)+302 (g) → 2CO2 (g) + 4H₂O (g) Round your answer to zero decimal places. ☐ kJ x10 ☐ Subm Check 2020 Hill LLC. All Rights Reserved. Terms of Use | Privacy Cearrow_forwardIdentifying the major species in weak acid or weak base equilibria Your answer is incorrect. • Row 2: Your answer is incorrect. • Row 3: Your answer is incorrect. • Row 6: Your answer is incorrect. 0/5 The preparations of two aqueous solutions are described in the table below. For each solution, write the chemical formulas of the major species present at equilibrium. You can leave out water itself. Write the chemical formulas of the species that will act as acids in the 'acids' row, the formulas of the species that will act as bases in the 'bases' row, and the formulas of the species that will act as neither acids nor bases in the 'other' row. You will find it useful to keep in mind that HF is a weak acid. acids: HF 0.1 mol of NaOH is added to 1.0 L of a 0.7M HF solution. bases: 0.13 mol of HCl is added to 1.0 L of a solution that is 1.0M in both HF and KF. Exponent other: F acids: HF bases: F other: K 1 0,0,... ? 000 18 Ararrow_forward
- Using reaction free energy to predict equilibrium composition Consider the following equilibrium: 2NOCI (g) 2NO (g) + Cl2 (g) AGº =41. kJ Now suppose a reaction vessel is filled with 4.50 atm of nitrosyl chloride (NOCI) and 6.38 atm of chlorine (C12) at 212. °C. Answer the following questions about this system: ? rise Under these conditions, will the pressure of NOCI tend to rise or fall? x10 fall Is it possible to reverse this tendency by adding NO? In other words, if you said the pressure of NOCI will tend to rise, can that be changed to a tendency to fall by adding NO? Similarly, if you said the pressure of NOCI will tend to fall, can that be changed to a tendency to rise by adding NO? yes no If you said the tendency can be reversed in the second question, calculate the minimum pressure of NO needed to reverse it. Round your answer to 2 significant digits. 0.035 atm ✓ G 00. 18 Ararrow_forwardHighlight each glycosidic bond in the molecule below. Then answer the questions in the table under the drawing area. HO- HO- -0 OH OH HO NG HO- HO- OH OH OH OH NG OHarrow_forward€ + Suppose the molecule in the drawing area below were reacted with H₂ over a platinum catalyst. Edit the molecule to show what would happen to it. That is, turn it into the product of the reaction. Also, write the name of the product molecule under the drawing area. Name: ☐ H C=0 X H- OH HO- H HO- -H CH₂OH ×arrow_forward
- Draw the Haworth projection of the disaccharide made by joining D-glucose and D-mannose with a ẞ(1-4) glycosidic bond. If the disaccharide has more than one anomer, you can draw any of them. Click and drag to start drawing a structure. Xarrow_forwardEpoxides can be opened in aqueous acid or aqueous base to produce diols (molecules with two OH groups). In this question, you'll explore the mechanism of epoxide opening in aqueous acid. 2nd attempt Be sure to show all four bonds at stereocenters using hash and wedge lines. 0 0 Draw curved arrows to show how the epoxide reacts with hydronium ion. 100 +1: 1st attempt Feedback Be sure to show all four bonds at stereocenters using hash and wedge lines. See Periodic Table See Hint H A 5 F F Hr See Periodic Table See Hintarrow_forward03 Question (1 point) For the reaction below, draw both of the major organic products. Be sure to consider stereochemistry. > 1. CH₂CH₂MgBr 2. H₂O 3rd attempt Draw all four bonds at chiral centers. Draw all stereoisomers formed. Draw the structures here. e 130 AN H See Periodic Table See Hint P C Brarrow_forward
- You may wish to address the following issues in your response if they are pertinent to the reaction(s) you propose to employ:1) Chemoselectivity (why this functional group and not another?) 2) Regioselectivity (why here and not there?) 3) Stereoselectivity (why this stereoisomer?) 4) Changes in oxidation state. Please make it in detail and draw it out too in what step what happens. Thank you for helping me!arrow_forward1) Chemoselectivity (why this functional group and not another?) 2) Regioselectivity (why here and not there?) 3) Stereoselectivity (why this stereoisomer?) 4) Changes in oxidation state. Everything in detail and draw out and write it.arrow_forwardCalculating the pH at equivalence of a titration 3/5 Izabella A chemist titrates 120.0 mL of a 0.7191M dimethylamine ((CH3)2NH) solution with 0.5501 M HBr solution at 25 °C. Calculate the pH at equivalence. The pk of dimethylamine is 3.27. Round your answer to 2 decimal places. Note for advanced students: you may assume the total volume of the solution equals the initial volume plus the volume of HBr solution added. pH = ☐ ✓ 18 Ar Boarrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning



