(a)
Interpretation:
Given chemical equation should be balanced. Whether the equation can be classified as
Concept Introduction:
Balanced chemical equation gives the details about the identities of the reactants and products and also how much of each reactant and product participate in the reaction. The numbers in the balanced equation (coefficients) enable us to determine how much product we can get from a given quantity of reactants.
Normally the unbalanced equations are balanced by inspection starting with the most complicated molecule. We should determine what coefficient is necessary to equalize the number of each type of atoms on both side of the arrow. The coefficients used should be the smallest integers which balance the equation.
The driving force involved in oxidation- reduction reaction is transfer of electrons between atoms and ions. While one substance is oxidized by losing electrons, another species takes up that electron and get reduced.
Answer to Problem 20CR
This is not an oxidation reduction reaction.
Explanation of Solution
In this unbalanced equation number of NO3 - ions in reactants side is one and two in the product side. So we place 2 before HNO3. Then the number of H atoms also gets balanced. Other atoms present in the equation are already balanced. So the balanced equation is,
This is not an oxidation reduction reaction. Any of those atoms have not changed their oxidation state. They simply have exchanged their anions. So this is a double displacement reaction, as well as due to the formation of water. This is also an acid base reaction.
(b)
Interpretation:
Given chemical equation should be balanced. Whether the equation can be classified as oxidation-reduction reactions should be mentioned.
Concept Introduction:
Balanced chemical equation gives the details about the identities of the reactants and products and also how much of each reactant and product participate in the reaction. The numbers in the balanced equation (coefficients) enable us to determine how much product we can get from a given quantity of reactants.
Normally the unbalanced equations are balanced by inspection starting with the most complicated molecule. We should determine what coefficient is necessary to equalize the number of each type of atoms on both side of the arrow. The coefficients used should be the smallest integers which balance the equation.
The driving force involved in oxidation- reduction reaction is transfer of electrons between atoms and ions. While one substance is oxidized by losing electrons, another species takes up that electron and get reduced.
Answer to Problem 20CR
This is an oxidation reduction reaction.
Explanation of Solution
There are four O atoms in the reactants side but only three in products side. In order to make the numbers equal in both sides, we place 2 before CO2 and MgCO3. Then number of Mg atom in the products side becomes two. Therefore we place 2 before Mg. So the balanced equation is,
Mg has oxidized from 0 oxidation state to + 2 oxidation state. O2 has reduced from its 0 oxidation state to -2 oxidation state. So this is an oxidation reduction reaction.
(c)
Interpretation:
Given chemical equation should be balanced. Whether the equation can be classified as oxidation-reduction reactions should be mentioned.
Concept Introduction:
Balanced chemical equation gives the details about the identities of the reactants and products and also how much of each reactant and product participate in the reaction. The numbers in the balanced equation (coefficients) enable us to determine how much product we can get from a given quantity of reactants.
Normally the unbalanced equations are balanced by inspection starting with the most complicated molecule. We should determine what coefficient is necessary to equalize the number of each type of atoms on both side of the arrow. The coefficients used should be the smallest integers which balance the equation.
The driving force involved in oxidation- reduction reaction is transfer of electrons between atoms and ions. While one substance is oxidized by losing electrons, another species takes up that electron and get reduced.
Answer to Problem 20CR
This is not an oxidation reduction reaction.
Explanation of Solution
In the unbalanced equation, number of Na atoms in reactants side is one and in products side it’s two. So we place 2 before NaOH. Then the number of OH- ions in both sides becomes equal. Other atoms present in the equation are already balanced. So the balanced equation is,
This is not an oxidation reduction reaction as any atom does not change their oxidation state. This is a precipitation reaction as well as a double displacement reaction since the two compounds have simply exchanged their anions.
(d)
Interpretation:
Given chemical equation should be balanced. Whether the equation can be classified as oxidation-reduction reactions should be mentioned.
Concept Introduction:
Balanced chemical equation gives the details about the identities of the reactants and products and also how much of each reactant and product participate in the reaction. The numbers in the balanced equation (coefficients) enable us to determine how much product we can get from a given quantity of reactants.
Normally the unbalanced equations are balanced by inspection starting with the most complicated molecule. We should determine what coefficient is necessary to equalize the number of each type of atoms on both side of the arrow. The coefficients used should be the smallest integers which balance the equation.
The driving force involved in oxidation- reduction reaction is transfer of electrons between atoms and ions. While one substance is oxidized by losing electrons, another species takes up that electron and get reduced.
Answer to Problem 20CR
This is not an oxidation reduction reaction.
Explanation of Solution
The equation is already balanced. And this is not an oxidation reduction reaction as any atom in the equation does not change their oxidation states. This is an acid base reaction as well as a double displacement reaction, since the two reactants have simply exchanged their anions.
(e)
Interpretation:
Given chemical equation should be balanced. Whether the equation can be classified as oxidation-reduction reactions should be mentioned.
Concept Introduction:
Balanced chemical equation gives the details about the identities of the reactants and products and also how much of each reactant and product participate in the reaction. The numbers in the balanced equation (coefficients) enable us to determine how much product we can get from a given quantity of reactants.
Normally the unbalanced equations are balanced by inspection starting with the most complicated molecule. We should determine what coefficient is necessary to equalize the number of each type of atoms on both side of the arrow. The coefficients used should be the smallest integers which balance the equation.
The driving force involved in oxidation- reduction reaction is transfer of electrons between atoms and ions. While one substance is oxidized by losing electrons, another species takes up that electron and get reduced.
Answer to Problem 20CR
This is an oxidation reduction reaction.
Explanation of Solution
In the unbalanced equation, number of C in reactants side is three but one in products side. So we place 3 before CO2. Number of H atoms in reactants side is eight, but only two in the products side. So we place 4 before H2 O. But then the number of O in the products side becomes 10, but there are only two in the reactants side. So we place 5 before O2. So the balanced equation is,
This is an oxidation reduction reaction. O2 is present as a reactant in this equation. If a non metal reacts with oxygen it is a sign of oxidation reduction reaction. Here the hydrocarbon is oxidized and Oxygen is reduced.
(f)
Interpretation:
Given chemical equation should be balanced. Whether the equation can be classified as oxidation-reduction reactions should be mentioned.
Concept Introduction:
Balanced chemical equation gives the details about the identities of the reactants and products and also how much of each reactant and product participate in the reaction. The numbers in the balanced equation (coefficients) enable us to determine how much product we can get from a given quantity of reactants.
Normally the unbalanced equations are balanced by inspection starting with the most complicated molecule. We should determine what coefficient is necessary to equalize the number of each type of atoms on both side of the arrow. The coefficients used should be the smallest integers which balance the equation.
The driving force involved in oxidation- reduction reaction is transfer of electrons between atoms and ions. While one substance is oxidized by losing electrons, another species takes up that electron and get reduced.
Answer to Problem 20CR
This is not an oxidation-reduction reaction.
Explanation of Solution
In the unbalanced equation, number of NH3 ligand in reactants side is six but one in products side. So we place 6 before NH3. All the other atoms in the equation are already balanced. So the balanced equation is,
This is not an oxidation reduction reaction as any atom in the equation does not change its oxidation state. This is a decomposition reaction.
(g)
Interpretation:
Given chemical equation should be balanced. Whether the equation can be classified as oxidation-reduction reactions should be mentioned.
Concept Introduction:
Balanced chemical equation gives the details about the identities of the reactants and products and also how much of each reactant and product participate in the reaction. The numbers in the balanced equation (coefficients) enable us to determine how much product we can get from a given quantity of reactants.
Normally the unbalanced equations are balanced by inspection starting with the most complicated molecule. We should determine what coefficient is necessary to equalize the number of each type of atoms on both side of the arrow. The coefficients used should be the smallest integers which balance the equation.
The driving force involved in oxidation- reduction reaction is transfer of electrons between atoms and ions. While one substance is oxidized by losing electrons, another species takes up that electron and get reduced.
Answer to Problem 20CR
This is not an oxidation reduction reaction.
Explanation of Solution
In the unbalanced equation, number of C2 H3 O2 - ligand in the reactants side is two and one in the products side. So we place 2 before HC2 H3 O2. And the number of Cl atoms in reactants side is one but it is two in the product side. So we place 2 before HCl. Then all the other atoms become balanced. So the balanced equation is,
This is not an oxidation reduction reaction as any atom does not change their oxidation states. This is a precipitation reaction as well as a double displacement reaction, since the two reactants have exchanged their anions.
(h)
Interpretation:
Given chemical equation should be balanced. Whether the equation can be classified as oxidation-reduction reactions should be mentioned.
Concept Introduction:
Balanced chemical equation gives the details about the identities of the reactants and products and also how much of each reactant and product participate in the reaction. The numbers in the balanced equation (coefficients) enable us to determine how much product we can get from a given quantity of reactants.
Normally the unbalanced equations are balanced by inspection starting with the most complicated molecule. We should determine what coefficient is necessary to equalize the number of each type of atoms on both side of the arrow. The coefficients used should be the smallest integers which balance the equation.
The driving force involved in oxidation- reduction reaction is transfer of electrons between atoms and ions. While one substance is oxidized by losing electrons, another species takes up that electron and get reduced.
Answer to Problem 20CR
This is an oxidation reduction reaction.
Explanation of Solution
In the unbalanced equation, number of C atoms in the reactants side is twelve but in the products side it is one. So we place 12 before C. Number of H atoms in the reactants side is 22, but in the products side it is two. So we place 11 before H2 O. Then the number of O atoms also becomes equal in both sides. So the balanced equation is,
This is an oxidation reduction reaction. C in C1 2 H2 2 O1 1 is reduced into C. And H in C1 2 H2 2 O1 1 has oxidized into H2 O. This is also a decomposition reaction.
(i)
Interpretation:
Given chemical equation should be balanced. Whether the equation can be classified as oxidation-reduction reactions should be mentioned.
Concept Introduction:
Balanced chemical equation gives the details about the identities of the reactants and products and also how much of each reactant and product participate in the reaction. The numbers in the balanced equation (coefficients) enable us to determine how much product we can get from a given quantity of reactants.
Normally the unbalanced equations are balanced by inspection starting with the most complicated molecule. We should determine what coefficient is necessary to equalize the number of each type of atoms on both side of the arrow. The coefficients used should be the smallest integers which balance the equation.
The driving force involved in oxidation- reduction reaction is transfer of electrons between atoms and ions. While one substance is oxidized by losing electrons, another species takes up that electron and get reduced.
Answer to Problem 20CR
This is an oxidation reduction reaction.
Explanation of Solution
In the unbalanced equation, number of NO3 - ions in the reactants side is one but in the products side it is three. So we place 3 before HNO3. Then the number of H atoms in the reactants side becomes three, but in the products side it is two. So we place 6 before HNO3 and 3 before H2. Then the number of NO3 - ions becomes six in the reactants side. So we place 2 before Al(NO3 )3. Then number of Al atoms in the products side becomes two. So we place 2 before Al. finally the balanced equation is,
This is an oxidation reduction reaction. Al has oxidized form its 0 oxidation state to + 3 oxidation state and H has reduced from + 1 oxidation state into 0 oxidation state. This is also a single displacement reaction, since only H is displaced by Al in this reaction.
(j)
Interpretation:
Given chemical equation should be balanced. Whether the equation can be classified as oxidation-reduction reactions should be mentioned.
Concept Introduction:
Balanced chemical equation gives the details about the identities of the reactants and products and also how much of each reactant and product participate in the reaction. The numbers in the balanced equation (coefficients) enable us to determine how much product we can get from a given quantity of reactants.
Normally the unbalanced equations are balanced by inspection starting with the most complicated molecule. We should determine what coefficient is necessary to equalize the number of each type of atoms on both side of the arrow. The coefficients used should be the smallest integers which balance the equation.
The driving force involved in oxidation- reduction reaction is transfer of electrons between atoms and ions. While one substance is oxidized by losing electrons, another species takes up that electron and get reduced.
Answer to Problem 20CR
This is an oxidation reduction reaction.
Explanation of Solution
In the unbalanced equation, number of O atoms in the reactants side is two but in the products side it is three. So we place 3 before O2 and 2 before B2 O3. Then the number of B atoms in the products side becomes four. So we place 4 before B. So the balanced equation is,
This is an oxidation reduction reaction. B has oxidized from 0 oxidation state to + 3 oxidation state and O has reduced from 0 oxidation state to -2 oxidation state. This is also a synthesis reaction, since all the reactants are natural state elements forming B2 O3.
Want to see more full solutions like this?
Chapter 7 Solutions
Introductory Chemistry: A Foundation
- 50= 56 The follovaina fictitious unbalanced REDOX seaction is made weine teachers' intitials aud some the lo0) GRC axyğen. and Balance the followaig fictous REDOX reaetion tisus eu a fiece of haher 'and show All steps and Shoo All on CHO, + Sh h z ²+ LAcidic Medium Ch-+Sh Steh1 Zithese Show the 2itherr Show the oXIdatiom numbere ed each species-using the table below or va the arrois that he used in Vass (2) equation systes Readant landuct Ch Sharrow_forward6 CO2(aq) + 6 H2O) ------- 6 O2g) + C6H12O6laq) In this reaction what species is being oxidized and which is being reduced? Answers written as: species oxidized; species reduced all the O atoms in carbon dioxide and/or water; C in carbon dioxide O Cin carbon dioxide; H in water Cin carbon dioxide; 12 O atoms in carbon dioxide and/or water O 12 O atoms in carbon dioxide and/or water; C in carbon dioxidearrow_forward> (1_101232) (2) el 25 April-1 May > MidExam-28-4-2021 ne Calendar Badges All courses What is the oxidation state of iron in K4FE(CN)6? O a. 2+ O b. 4+ O c. 6+ Od. 3+ 4 £5 . 6 T 7 v8 A9 R TY Y !U 10arrow_forward
- Write the sum of the coefficient when each equation is balanced to the lowest whole number coefficient. Balance the following redox equations Include the coefficient of any H+ OH- and H2O that is necessary to balance the equation. Sum of coefficient _HNO3 (4) H3PO4(09) NO 1 P(s) + H2Ou Cl26) H20) H2S04(0) HCI, '(aq) 2 _KBRO2 (0) HBr, (9) KBr, (aq) Cl2(6) KCI, + 3 HNO3 (a9) _As205 NO H200 4 N219) NH3() 5 5. HNO3(09) NO, (9) 6. NO26) 6. KNO3 (ag) Br2 H200 NO KBr, (s) HNO3 00) 7 7. MnS04(a9) * H2S04() * _K2S04(c0) * H20) 8 8 HBr (aq) Br2) KBr, (aq) MnBr2 (o) * 9 _NaOH(a) _Cr2O3(s) 10 Na2Cr207() * –H2O» + 10arrow_forwardcalculate the Oxidation numbers of the FollowinJ a. S in sOz 2° |2. Up inarrow_forwardHow to balance the following redox half reactions?arrow_forward
- Balance the following reaction in acidic solution. PbO2 + Hg → Hg, + Pb²+ Fill in the coefficients for the balanced overall equation. -- H* +- - ] PbO, - - v Hg,* +- - v H,0 Hg + v Pb2+ + v %3-arrow_forwardRedox: writing half reactions of a single displacement reaction Include statesarrow_forwardBalance the net ionic redox equations by the half-reaction method: full reaction balanced in acid: РЬО2 + CI Pb2+ + _clO3 reductant half-reaction: oxidant half-reaction: full reaction balanced in base: PbO2 + _CI Pb2+ +_CIO3 - |arrow_forward
- 8. A 2.856-g sample of limestone was analyzed for Fe, Ca, and Mg. The iron was determined as Fe;Os, yielding 0.04561 g. Calcium was isolated as CaSO4, yielding a precipitate of 1.487 g, and Mg was isolated as 0.1599 g of Mg;P2O7. Report the amount of Fe, Ca, and Mg in the limestone sample as %w/w FeO, %w/w CaO, and %w/w MgO.arrow_forward//Please check pic //arrow_forward会 云 + 1 1 < co T LL Car note CAU EMAIL CANVAS Pirate Ship MYJSC Vacančies | A... Birmingham Néw C....e Measures [Review Topics] [References] Complete and balance the following equations. (Use the lowest possible coefficients. Be sure to specify states such as (aq) or (s). If a box is not needed, leave it blank. If no reaction occurs, leave all boxes blank.) a. I2 (aq) + Cl¯(ag) → b. Cl2 (aq) +I¯(aq) → c. Br2 (aq) +I (aq) → d. Br2 (aq) + CI¯ (aq) → Submit Answer Retry Entire Group 9 more group attempts remaining Previous Next Save and Exit L AON 14 étv MacBook Air 000 000 DD F7 F5 F4 F12 2$ 4. delete 8. 6. 7. } ] { [arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning