EBK FLUID MECHANICS: FUNDAMENTALS AND A
4th Edition
ISBN: 8220103676205
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 105P
To determine
(a)
The relationship for f in term of Eu.
To determine
(b)
Whether f shows Reynolds number id independence at large values of Re and the value of f at very high Re.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A bullet is to be tested in the laboratory to determine the drag force on it. Dependent parameter the drag force D (Newton) depends on the velocity of the bullet V(m/s), the length of the bullet L(m), sound velocity c(m/s), density of fluid ρ (kg/m3) and dynamic viscosity µ(kg/ms). Solve the problem by making the necessary assumptions and drawing the schematic figure.
I-Determine the nondimensional p parameters using repeating variables
ii-a bullet with a speed of 96,2 m/s in air may be modelled in a water tunnel with a test section velocity of 262 cm/s. Determine the length of the model, if the length of the bullet is 56,2 mm. The air and water temperature is 20 oC degree at 1 atm.
iii- if the drag force on the model is measured to be 2,62 N, then determine the expected drag force on the bullet. Comment on dynamic similarity equivalence?
The true option
A- Womersley number (a) of a human aorta is 20 and for the rabbit aorta is 17, the blood density is approximately the same across the species. The values of viscosity were 0.0035 Ns/m² for the human and 0.0040 Ns/m² for the rabbit. The diameter of the aorta is 2.0 cm for the man, and 0.7 cm for the rabbit, estimate the heart rate beats per minute (bpm) for both species
Chapter 7 Solutions
EBK FLUID MECHANICS: FUNDAMENTALS AND A
Ch. 7 - What is the difference between a dimension and a...Ch. 7 - List the seven primary dimensions. What is...Ch. 7 - Write the primary dimensions of the universal...Ch. 7 - Write the primary dimensions of each of the...Ch. 7 - Prob. 5PCh. 7 - Prob. 6PCh. 7 - Prob. 7PCh. 7 - On a periodic chart of the elements, molar mass...Ch. 7 - Prob. 9PCh. 7 - The moment of force(M)is formed by the cross...
Ch. 7 - You are probably familiar with Ohm law for...Ch. 7 - Write the primary dimensions of each of the...Ch. 7 - Prob. 13PCh. 7 - Thermal conductivity k is a measure of the ability...Ch. 7 - Write the primary dimensions of each of the...Ch. 7 - Prob. 16PCh. 7 - Explain the law of dimensional homogeneity in...Ch. 7 - Prob. 18PCh. 7 - Prob. 19PCh. 7 - An important application of fluid mechanics is the...Ch. 7 - Prob. 21PCh. 7 - Prob. 22PCh. 7 - In Chap. 4, we defined the material acceleration,...Ch. 7 - Newton's second law is the foundation for the...Ch. 7 - What is the primary reason for nondimensionalizing...Ch. 7 - Prob. 26PCh. 7 - In Chap. 9, we define the stream function for...Ch. 7 - In an oscillating incompressible flow field the...Ch. 7 - Prob. 29PCh. 7 - Consider ventilation of a well-mixed room as in...Ch. 7 - In an oscillating compressible flow field the...Ch. 7 - List the three primary purposes of dimensional...Ch. 7 - List and describe the three necessary conditions...Ch. 7 - A student team is to design a human-powered...Ch. 7 - Repeat Prob. 7-34 with all the same conditions...Ch. 7 - This is a follow-tip to Prob. 7-34. The students...Ch. 7 - The aerodynamic drag of a new sports car is lo be...Ch. 7 - This is a follow-tip to Prob. 7-37E. The...Ch. 7 - Consider the common situation in which a...Ch. 7 - Prob. 40PCh. 7 - Some students want to visualize flow over a...Ch. 7 - A lightweight parachute is being designed for...Ch. 7 - Prob. 43PCh. 7 - Prob. 44PCh. 7 - Prob. 45PCh. 7 - The Richardson number is defined as Ri=L5gV2...Ch. 7 - Prob. 47PCh. 7 - Prob. 48PCh. 7 - A stirrer is used to mix chemicals in a large tank...Ch. 7 - Prob. 50PCh. 7 - Albert Einstein is pondering how to write his...Ch. 7 - Consider filly developed Couette flow-flow between...Ch. 7 - Consider developing Couette flow-the same flow as...Ch. 7 - The speed of sound c in an ideal gas is known to...Ch. 7 - Repeat Prob. 7-54, except let the speed of sound c...Ch. 7 - Repeat Prob. 7-54, except let the speed of sound c...Ch. 7 - Prob. 57PCh. 7 - When small aerosol particles or microorganisms...Ch. 7 - Prob. 59PCh. 7 - Prob. 60PCh. 7 - Prob. 61PCh. 7 - An incompressible fluid of density and viscosity ...Ch. 7 - Prob. 63PCh. 7 - In the study of turbulent flow, turbulent viscous...Ch. 7 - Bill is working on an electrical circuit problem....Ch. 7 - A boundary layer is a thin region (usually along a...Ch. 7 - A liquid of density and viscosity is pumped at...Ch. 7 - A propeller of diameter D rotates at angular...Ch. 7 - Repeat Prob. 7-68 for the case an which the...Ch. 7 - Prob. 70PCh. 7 - Prob. 71PCh. 7 - Consider a liquid in a cylindrical container in...Ch. 7 - Prob. 73PCh. 7 - One of the first things you learn in physics class...Ch. 7 - Prob. 75CPCh. 7 - Prob. 76CPCh. 7 - Define wind tunnel blockage. What is the rule of...Ch. 7 - Prob. 78CPCh. 7 - Prob. 79CPCh. 7 - In the model truck example discussed in Section...Ch. 7 - Prob. 83PCh. 7 - A small wind tunnel in a university's...Ch. 7 - There are many established nondimensional...Ch. 7 - Prob. 86CPCh. 7 - For each statement, choose whether the statement...Ch. 7 - Prob. 88PCh. 7 - Prob. 89PCh. 7 - Prob. 90PCh. 7 - Prob. 91PCh. 7 - From fundamental electronics, the current flowing...Ch. 7 - Prob. 93PCh. 7 - Prob. 94PCh. 7 - The Archimedes number listed in Table 7-5 is...Ch. 7 - Prob. 96PCh. 7 - Prob. 97PCh. 7 - Prob. 98PCh. 7 - Prob. 99PCh. 7 - Prob. 100PCh. 7 - Repeal Prob. 7-100 except for a different...Ch. 7 - A liquid delivery system is being designed such...Ch. 7 - Prob. 103PCh. 7 - Au aerosol particle of characteristic size DPmoves...Ch. 7 - Prob. 105PCh. 7 - Prob. 106PCh. 7 - Prob. 107PCh. 7 - Prob. 108PCh. 7 - Prob. 109PCh. 7 - Prob. 110PCh. 7 - Repeat pall (a) of Prob. 7-110, except instead of...Ch. 7 - Sound intensity I is defined as the acoustic power...Ch. 7 - Repeal Prob. 7-112, but with the distance r from...Ch. 7 - Engineers at MIT have developed a mechanical model...Ch. 7 - Prob. 116PCh. 7 - Prob. 117PCh. 7 - An electrostatic precipitator (ESP) is a device...Ch. 7 - Prob. 119PCh. 7 - Prob. 120PCh. 7 - Prob. 121PCh. 7 - Prob. 122PCh. 7 - Prob. 123PCh. 7 - Prob. 124PCh. 7 - The primary dimensions of kinematic viscosity are...Ch. 7 - There at four additive terms in an equation, and...Ch. 7 - Prob. 127PCh. 7 - Prob. 128PCh. 7 - Prob. 129PCh. 7 - A one-third scale model of a car is to be tested...Ch. 7 - Prob. 131PCh. 7 - A one-third scale model of an airplane is to be...Ch. 7 - Prob. 133PCh. 7 - Prob. 134PCh. 7 - Consider a boundary layer growing along a thin...Ch. 7 - Prob. 136P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The differential equation for small-amplitude vibrations y(r, f) of a simple beam is given by a*y + E = 0 ax pA where p = beam material density A = cross-sectional area I= area moment of inertia E = Young's modulus Use only the quantities p, E, and A to nondimensionalize y, x, and t, and rewrite the differential equation in dimensionless form. Do any parameters remain? Could they be removed by further manipulation of the variables?arrow_forwardQ1: If an air stream flowing at velocity (U) pasta body of length (L) causes a drag force (F) on the body which depends only upon U, L, and fluid viscosity μ. Formulate the suitable dimensionless parameter of the air drag force.arrow_forwardThe resistance R, to the motion of a completely submerged body depends upon the length of the body L, velocity of flow V, mass density of fluid p and kinematic viscosity of fluid v. By dimensional analysis prove that R = pr* L') VL' = pV?1arrow_forward
- The Reynolds transport theorem (RTT) is discussed in Chap. 4 of your textbook. For the general case of a moving and/or deforming control volume, we write the RTT as follows: d pb dV + pbV-ñ dA dt dt dB sys where Vr is the relative velocity, i.e., the velocity of the fluid relative to the control surface. Write the primary dimensions of each additive term in the equation and verify that the equation is dimensionally homogeneous. Show all your work. (Hint: Since B can be any property of the flow-scalar, vector, or even tensor—it can have a variety of dimensions. So, just let the dimensions of B be those of B itself, {B}. Also, b is defined as B per unit mass.)arrow_forwardDimensional analysis concept applied herearrow_forwardConsider steady viscous flow through a small horizontal tube. For this type of flow, the pressure gradient along the tube, Δp ⁄ ΔL should be a function of the viscosity Y, the mean velocity V, and the diameter D. By dimensional analysis, derive a func- tional relationship relating these variables. Fluid mechanicsarrow_forward
- Taylor number (Ta) is used here to describe the ratio between the inertia effect and the viscous effect. By applying Buckingham Pi's Theorem, determine an equation for Ta as a function of the radius of inner cylinder (r), cylinder tangential velocity (v), fluid dynamic viscosity (u), gap distance (L) and fluid density (p). Q4arrow_forwardThe water levels in the reservoirs are constant in the three reservoir systems given below, where local losses are neglected. How many meters is the piezometer height at the node (D)? The fluid passing through the pipes is water and its kinematic viscosity is 1.02x10-6 m²/ s. Other data are given in the table below. please help me fastarrow_forwardConsider laminar flow through a long section of pipe, as in Fig. For laminar flow it turns out that wall roughness is not a relevant parameter unless ? is very large. The volume flow rate V· through the pipe is a function of pipe diameter D, fluid viscosity ? , and axial pressure gradient dP/dx. If pipe diameter is doubled, all else being equal, by what factor will volume flow rate increase? Use dimensional analysis.arrow_forward
- 1. The thrust of a marine propeller Fr depends on water density p, propeller diameter D, speed of advance through the water V, acceleration due to gravity g, the angular speed of the propeller w, the water pressure p, and the water viscosity μ. You want to find a set of dimensionless variables on which the thrust coefficient depends. In other words CT = FT · = ƒen(#1, #2, ...) pV2D2 (a) What is k? Explain. (b) Find the 's on the right-hand-side of equation 1 if one of them HAS to be a Froude number gD/V², (1)arrow_forwardProblems H.pdf > Problems H.W: Lecture No.6 Part 2 Q1-(2.4-4, Holland): A fluid of density (p) and dynamic viscosity (u) flows in s.s in a cylindrical pipe of inside diameter (d) with mean linear velocity (u). Derive an expression for the pressure gradient AP/L in terms of p, u, d & u. By dimensional analysis (Note Lect. No.3). Q2-An oil with a viscosity of u= 0.40 N-s/m and density p= 900 kg/m flows in a pipe of diameter d= 0.20m. (a) What pressure drop, pl-p2, is needed to produce a flowrate of Q=2.0x10-5 m/s if the pipe is horizontal with xl=0 and x2=10 m? (b) How steep a hill, part (a), but with pl=p2? (c) For the conditions of part (b), if pl=200 kPa, what is the pressure at section, x3=5 m, where x is measured along the pipe? „must the pipe be on if the oil is to flow through the pipe at the same rate as in IIarrow_forwardThe pressure drops 4P = P₁ P2 through a long section of round pipe can be written in terms of the shear stress Tw along the wall. Shown in Figure 3 is the shear stress acting by the wall on the fluid. The shaded region is a control volume composed of the fluid in the pipe between axial locations 1 and 2. Using the method of repeating variables, generate a relationship for pressure drop as a function of all other parameters Final ans AP = P μ (₁ AP= {(₂17₂) P₁ CV UPL м = (²1 ²² an! VPL O P.H. L Varrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Unit Conversion the Easy Way (Dimensional Analysis); Author: ketzbook;https://www.youtube.com/watch?v=HRe1mire4Gc;License: Standard YouTube License, CC-BY