EBK FLUID MECHANICS: FUNDAMENTALS AND A
4th Edition
ISBN: 8220103676205
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 119P
To determine
The relationship between output power, torque and angular velocity in dimensionless form by using dimensional analysis and to compare the result.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Force F is applied at the tip of a cantilever beam of length L and moment of inertia I Fig. . The modulus of elasticity of the beam material is E. When the force is applied, the tip deflection of the beam is z d.Use dimensional analysis to generate a relationship for zd as a function of the independent variables. Name any established dimensionless parameters that appear in your analysis
Using primary dimensions, verify that the Grashof number is indeed dimensionless.
I want handwritten don't copy from chegg same to same change it even if u copy and handwritten only
Chapter 7 Solutions
EBK FLUID MECHANICS: FUNDAMENTALS AND A
Ch. 7 - What is the difference between a dimension and a...Ch. 7 - List the seven primary dimensions. What is...Ch. 7 - Write the primary dimensions of the universal...Ch. 7 - Write the primary dimensions of each of the...Ch. 7 - Prob. 5PCh. 7 - Prob. 6PCh. 7 - Prob. 7PCh. 7 - On a periodic chart of the elements, molar mass...Ch. 7 - Prob. 9PCh. 7 - The moment of force(M)is formed by the cross...
Ch. 7 - You are probably familiar with Ohm law for...Ch. 7 - Write the primary dimensions of each of the...Ch. 7 - Prob. 13PCh. 7 - Thermal conductivity k is a measure of the ability...Ch. 7 - Write the primary dimensions of each of the...Ch. 7 - Prob. 16PCh. 7 - Explain the law of dimensional homogeneity in...Ch. 7 - Prob. 18PCh. 7 - Prob. 19PCh. 7 - An important application of fluid mechanics is the...Ch. 7 - Prob. 21PCh. 7 - Prob. 22PCh. 7 - In Chap. 4, we defined the material acceleration,...Ch. 7 - Newton's second law is the foundation for the...Ch. 7 - What is the primary reason for nondimensionalizing...Ch. 7 - Prob. 26PCh. 7 - In Chap. 9, we define the stream function for...Ch. 7 - In an oscillating incompressible flow field the...Ch. 7 - Prob. 29PCh. 7 - Consider ventilation of a well-mixed room as in...Ch. 7 - In an oscillating compressible flow field the...Ch. 7 - List the three primary purposes of dimensional...Ch. 7 - List and describe the three necessary conditions...Ch. 7 - A student team is to design a human-powered...Ch. 7 - Repeat Prob. 7-34 with all the same conditions...Ch. 7 - This is a follow-tip to Prob. 7-34. The students...Ch. 7 - The aerodynamic drag of a new sports car is lo be...Ch. 7 - This is a follow-tip to Prob. 7-37E. The...Ch. 7 - Consider the common situation in which a...Ch. 7 - Prob. 40PCh. 7 - Some students want to visualize flow over a...Ch. 7 - A lightweight parachute is being designed for...Ch. 7 - Prob. 43PCh. 7 - Prob. 44PCh. 7 - Prob. 45PCh. 7 - The Richardson number is defined as Ri=L5gV2...Ch. 7 - Prob. 47PCh. 7 - Prob. 48PCh. 7 - A stirrer is used to mix chemicals in a large tank...Ch. 7 - Prob. 50PCh. 7 - Albert Einstein is pondering how to write his...Ch. 7 - Consider filly developed Couette flow-flow between...Ch. 7 - Consider developing Couette flow-the same flow as...Ch. 7 - The speed of sound c in an ideal gas is known to...Ch. 7 - Repeat Prob. 7-54, except let the speed of sound c...Ch. 7 - Repeat Prob. 7-54, except let the speed of sound c...Ch. 7 - Prob. 57PCh. 7 - When small aerosol particles or microorganisms...Ch. 7 - Prob. 59PCh. 7 - Prob. 60PCh. 7 - Prob. 61PCh. 7 - An incompressible fluid of density and viscosity ...Ch. 7 - Prob. 63PCh. 7 - In the study of turbulent flow, turbulent viscous...Ch. 7 - Bill is working on an electrical circuit problem....Ch. 7 - A boundary layer is a thin region (usually along a...Ch. 7 - A liquid of density and viscosity is pumped at...Ch. 7 - A propeller of diameter D rotates at angular...Ch. 7 - Repeat Prob. 7-68 for the case an which the...Ch. 7 - Prob. 70PCh. 7 - Prob. 71PCh. 7 - Consider a liquid in a cylindrical container in...Ch. 7 - Prob. 73PCh. 7 - One of the first things you learn in physics class...Ch. 7 - Prob. 75CPCh. 7 - Prob. 76CPCh. 7 - Define wind tunnel blockage. What is the rule of...Ch. 7 - Prob. 78CPCh. 7 - Prob. 79CPCh. 7 - In the model truck example discussed in Section...Ch. 7 - Prob. 83PCh. 7 - A small wind tunnel in a university's...Ch. 7 - There are many established nondimensional...Ch. 7 - Prob. 86CPCh. 7 - For each statement, choose whether the statement...Ch. 7 - Prob. 88PCh. 7 - Prob. 89PCh. 7 - Prob. 90PCh. 7 - Prob. 91PCh. 7 - From fundamental electronics, the current flowing...Ch. 7 - Prob. 93PCh. 7 - Prob. 94PCh. 7 - The Archimedes number listed in Table 7-5 is...Ch. 7 - Prob. 96PCh. 7 - Prob. 97PCh. 7 - Prob. 98PCh. 7 - Prob. 99PCh. 7 - Prob. 100PCh. 7 - Repeal Prob. 7-100 except for a different...Ch. 7 - A liquid delivery system is being designed such...Ch. 7 - Prob. 103PCh. 7 - Au aerosol particle of characteristic size DPmoves...Ch. 7 - Prob. 105PCh. 7 - Prob. 106PCh. 7 - Prob. 107PCh. 7 - Prob. 108PCh. 7 - Prob. 109PCh. 7 - Prob. 110PCh. 7 - Repeat pall (a) of Prob. 7-110, except instead of...Ch. 7 - Sound intensity I is defined as the acoustic power...Ch. 7 - Repeal Prob. 7-112, but with the distance r from...Ch. 7 - Engineers at MIT have developed a mechanical model...Ch. 7 - Prob. 116PCh. 7 - Prob. 117PCh. 7 - An electrostatic precipitator (ESP) is a device...Ch. 7 - Prob. 119PCh. 7 - Prob. 120PCh. 7 - Prob. 121PCh. 7 - Prob. 122PCh. 7 - Prob. 123PCh. 7 - Prob. 124PCh. 7 - The primary dimensions of kinematic viscosity are...Ch. 7 - There at four additive terms in an equation, and...Ch. 7 - Prob. 127PCh. 7 - Prob. 128PCh. 7 - Prob. 129PCh. 7 - A one-third scale model of a car is to be tested...Ch. 7 - Prob. 131PCh. 7 - A one-third scale model of an airplane is to be...Ch. 7 - Prob. 133PCh. 7 - Prob. 134PCh. 7 - Consider a boundary layer growing along a thin...Ch. 7 - Prob. 136P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- When a sphere falls freely through a homogeneous fluid, it reaches a terminal velocity at which the weight of the sphere is balanced by the buoyant force and the frictional resistance of the fluid. Make a dimensional analysis of this problem and indicate how experimental data for this problem could be correlated. Neglect compressibility effects and the influence of surface roughness.arrow_forward5.13 The torque due to the frictional resistance of the oil film between a rotating shaft and its bearing is found to be dependent on the force F normal to the shaft, the speed of rotation N of the shaft, the dynamic viscosity of the oil, and the shaft diameter D. Establish a correlation among these variables by using dimensional analysis.arrow_forwardThe spin rate of a tennis ball determines the aerodynamic forces acting on it. In turn, the spin rate is a§ectedby the aerodynamic torque. If the torque depends on áight speed V , density , viscosity , ball diameter D,angular velocity !, and the fuzz height, hf , Önd the important dimensionless variables for this case. Use V ,, and D as your scaling (repeating) variables.arrow_forward
- Give Justification for performing a geometrically scaled model rather than the full-scale prototype in the technique of dimensional analysis and similarity.arrow_forwardEvaluate the use of dimensionless analysis using the Buckingham Pi Theorem for a given fluid flow system (D4) , where resistance tomotion ‘R’ for a sphere of diameter ‘D’ moving at constant velocity on the surface of a liquid is due to the density ‘ρ’ and the surfacewaves produced by the acceleration of gravity ‘g’. The dimensionless quantity linking these quantities is Ne= Function (Fr). To do thisyou must apply dimensional analysis to fluid flow system given in Figure 1 (P11). PICTURE IS ALSO ATTACHEDarrow_forwardPlease solve this problem, Thank you very much! Figure is attached 1. liquids in rotating cylinders rotates as a rigid body and considered at rest. The elevation difference h between the center of the liquid surface and the rim of the liquid surface is a function of angular velocity ?, fluid density ?, gravitational acceleration ?, and radius ?. Use the method of repeating variables to find a dimensionless relationship between the parameters. Show all the steps.arrow_forward
- Hi asapppparrow_forwardHow can I use dimensional analysis to show that in this problem both Froude's number and Reynold's number are relevant dimensionless parameters? Problem: Here shallow waves move at speed c. The surface of the waves is a function depth (h), gravitational accelaration is g, densisty is p and fluid viscosity is μ. I need to get the parameter in the form in the image. Please help :)arrow_forwardThe velocity V of propagation of ripples on the surface of a shallow liquid depends on the gravitational acceleration g and the liquid depth h. If Buckingham's Theorem is used to identify the salient dimensionless group(s), how many dimensionless group(s) will be obtained? Number of dimensionless group(s) = 1. {1} (Enter your answer as a number.)arrow_forward
- Hi, Please help me with this question and show the full solution,. Thank you very mucharrow_forwardA tiny aerosol particle of density pp and characteristic diameter Dp falls in air of density p and viscosity u . If the particle is small enough, the creeping flow approximation is valid, and the terminal settling speed of the particle V depends only on Dp, µ, gravitational constant g, and the density difference (pp - p). Use dimensional analysis to generate a relationship for Vas a function of the independent variables. Name any established dimensionless parameters that appear in your analysis.arrow_forwardA stirrer is used to mix chemicals in a tank let tank diameter Dtank and average liquid depth htank. The shaft power W . supplied to the stirrer blades is a function of stirrer diameter D, liquid density ? ,liquidviscosity ? , and the angular velocity ? of the spinning blades.Use the method of repeating variables to generate a dimensionless relationship between these parameters. Show all your work and be sure to identify your Π groups, modifying them as necessary.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Unit Conversion the Easy Way (Dimensional Analysis); Author: ketzbook;https://www.youtube.com/watch?v=HRe1mire4Gc;License: Standard YouTube License, CC-BY