
The dimensionless relationship.

Answer to Problem 50P
The dimensionless relationship is
Explanation of Solution
Given information:
The shaft power is
Write the expression of function of shaft power.
Write the dimension of density in
Here, the dimension of mass is
Write the dimension of the dynamic viscosity.
Here, the dimension of time is
Write the dimension of diameter in
Write the expression of angular velocity.
Here, the angle is
Write the dimension of time in
Write the dimension of angle in
Substitute
Write the expression of power.
Here, the energy is
Write the expression of Energy.
Here, the mass is
Write the dimension of mass in
Write the dimension of acceleration in
Write the dimension of displacement in
Substitute
Substitute
Write the dimension of tank diameter in
Write the dimension of average liquid depth in
Here, the number of variable is
Write the expression of number of pi-terms.
Here, the number of variable is
Substitute
Here, four pi-terms is present.
Here, the basic variable is
Write the expression of first pi-terms.
Here, the constants are
Write the expression of second pi-terms.
Write the expression of third pi-terms.
Write the expression of fourth pi-terms.
Write the dimension of first pi-term.
Write the dimension of second pi-term.
Write the dimension of third pi-term.
Write the dimension of fourth pi-term.
Substitute
Compare the power of
Compare the power of
Compare the power of
Substitute
Substitute
Compare the power of
Compare the power of
Compare the power of
Substitute
Substitute
Compare the power of
Compare the power of
Compare the power of
Substitute
Substitute
Compare the power of
Compare the power of
Compare the power of
Substitute
According to Buckingham pi-theorem the first pi-term is the function of rest of all another pi-term.
Substitute
Conclusion:
The dimensionless relationship is
Want to see more full solutions like this?
Chapter 7 Solutions
EBK FLUID MECHANICS: FUNDAMENTALS AND A
- Q5:(? Design the duct system of the figure below by using the balanced pressure method. The velocity in the duct attached to the AHU must not exceed 5m/s. The pressure loss for each diffuser is equal to 10Pa. 100CFM 100CFM 100CFM ☑ ☑ 40m AHU -16m- 8m- -12m- 57m 250CFM 40m -14m- 26m 36m ☑ 250CFMarrow_forwardA mass of ideal gas in a closed piston-cylinder system expands from 427 °C and 16 bar following the process law, pv1.36 = Constant (p times v to the power of 1.36 equals to a constant). For the gas, initial : final pressure ratio is 4:1 and the initial gas volume is 0.14 m³. The specific heat of the gas at constant pressure, Cp = 0.987 kJ/kg-K and the specific gas constant, R = 0.267 kJ/kg.K. Determine the change in total internal energy in the gas during the expansion. Enter your numerical answer in the answer box below in KILO JOULES (not in Joules) but do not enter the units. (There is no expected number of decimal points or significant figures).arrow_forwardmy ID# 016948724. Please solve this problem step by steparrow_forward
- My ID# 016948724 please find the forces for Fx=0: fy=0: fz=0: please help me to solve this problem step by steparrow_forwardMy ID# 016948724 please solve the proble step by step find the forces fx=o: fy=0; fz=0; and find shear moment and the bending moment diagran please draw the diagram for the shear and bending momentarrow_forwardMy ID#016948724. Please help me to find the moment of inertia lx ly are a please show to solve step by stepsarrow_forward
- My ID# 016948724arrow_forwardPlease do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forwardPlease do not use any AI tools to solve this question. I need a fully manual, step-by-step solution with clear explanations, as if it were done by a human tutor. No AI-generated responses, please.arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage LearningInternational Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE LRefrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage Learning


