Principles of Operations Management: Sustainability and Supply Chain Management (10th Edition)
10th Edition
ISBN: 9780134181981
Author: Jay Heizer, Barry Render, Chuck Munson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6.S, Problem 8P
a)
Summary Introduction
To determine: The value of control limits.
Introduction: Control charts used to determine whether the process is under control or not. Attributes and variables are the factors under the control charts.
b)
Summary Introduction
To determine: The value of control limits.
Introduction: Control charts used to determine whether the process is under control or not. Attributes and variables are the factors under the control charts.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A. Choudhury’s bowling ball factory in Illinois makes
bowling balls of adult size and weight only. The standard devia-tion in the weight of a bowling ball produced at the factory is
known to be 0.12 pounds. Each day for 24 days, the averageweight, in pounds, of nine of the bowling balls produced that dayhas been assessed as follows:
a) Establish a control chart for monitoring the average weights
of the bowling balls in which the upper and lower control lim-its are each two standard deviations from the mean. What are
the values of the control limits?b) If three standard deviations are used in the chart, how do thesevalues change? Why?
An automatic filling machine is used to fill 1-liter bottles of cola. The machine’s output is approximately normal with a mean of 1.0 liter and standard deviation of .01 liter. Output is monitored using means of samples of 25 observations.
Determine upper and lower control limits that will include roughly 97% of the sample means when the process is in control. Using Appendix B, Table A to find the value of Z corresponding to the mean control limits.
Auto pistons at Wemming Chung's plant in Shanghai are produced in a forging process, and the diameter is a critical factor
that must be controlled. From sample sizes of 5 pistons produced each day, the mean and the range of this diameter have
been as follows:
Day
Mean (mm)
Range R (mm)
158
4.3
151.2
4.4
155.7
4.2
153.5
4.8
156.6
4.5
What is the UCL using 3-sigma?(round your response to two decimal places).
1.
2.
4.
Chapter 6 Solutions
Principles of Operations Management: Sustainability and Supply Chain Management (10th Edition)
Ch. 6.S - Prob. 1DQCh. 6.S - Define in statistical control.Ch. 6.S - Prob. 3DQCh. 6.S - Prob. 4DQCh. 6.S - Prob. 5DQCh. 6.S - Prob. 6DQCh. 6.S - Prob. 7DQCh. 6.S - Prob. 8DQCh. 6.S - Prob. 9DQCh. 6.S - Prob. 10DQ
Ch. 6.S - Prob. 11DQCh. 6.S - Prob. 12DQCh. 6.S - Prob. 13DQCh. 6.S - Prob. 14DQCh. 6.S - Prob. 15DQCh. 6.S - Prob. 16DQCh. 6.S - Prob. 17DQCh. 6.S - Prob. 18DQCh. 6.S - Prob. 19DQCh. 6.S - Prob. 1PCh. 6.S - Prob. 2PCh. 6.S - Prob. 3PCh. 6.S - Prob. 4PCh. 6.S - Prob. 5PCh. 6.S - Prob. 6PCh. 6.S - Prob. 7PCh. 6.S - Prob. 8PCh. 6.S - Prob. 9PCh. 6.S - Prob. 10PCh. 6.S - Prob. 11PCh. 6.S - Prob. 12PCh. 6.S - Prob. 13PCh. 6.S - Prob. 14PCh. 6.S - Prob. 15PCh. 6.S - Prob. 16PCh. 6.S - Prob. 17PCh. 6.S - Prob. 18PCh. 6.S - Prob. 19PCh. 6.S - Prob. 20PCh. 6.S - Prob. 21PCh. 6.S - Prob. 22PCh. 6.S - Prob. 23PCh. 6.S - Prob. 24PCh. 6.S - Prob. 25PCh. 6.S - Prob. 26PCh. 6.S - Prob. 27PCh. 6.S - Prob. 40PCh. 6.S - Prob. 41PCh. 6.S - Prob. 42PCh. 6.S - Prob. 43PCh. 6.S - Prob. 44PCh. 6.S - Prob. 45PCh. 6.S - Prob. 51PCh. 6.S - Prob. 52PCh. 6.S - Prob. 53PCh. 6.S - Prob. 54PCh. 6.S - Prob. 55PCh. 6.S - Prob. 1CSCh. 6.S - Prob. 2CSCh. 6.S - Prob. 1.1VCCh. 6.S - Prob. 1.2VCCh. 6.S - Prob. 1.3VCCh. 6.S - Prob. 2.1VCCh. 6.S - Select two potential problems-one in the Darden...Ch. 6.S - Prob. 2.3VCCh. 6.S - Prob. 2.4VCCh. 6 - Prob. 1EDCh. 6 - Prob. 1DQCh. 6 - Prob. 2DQCh. 6 - Prob. 3DQCh. 6 - Prob. 4DQCh. 6 - Prob. 5DQCh. 6 - Prob. 6DQCh. 6 - Prob. 7DQCh. 6 - Prob. 8DQCh. 6 - Prob. 9DQCh. 6 - Prob. 10DQCh. 6 - Prob. 11DQCh. 6 - Prob. 12DQCh. 6 - Prob. 13DQCh. 6 - Prob. 14DQCh. 6 - Prob. 15DQCh. 6 - Prob. 16DQCh. 6 - Prob. 17DQCh. 6 - Prob. 18DQCh. 6 - An avant-garde clothing manufacturer runs a series...Ch. 6 - Prob. 2PCh. 6 - Prob. 3PCh. 6 - Prob. 4PCh. 6 - Kathleen McFaddens restaurant in Boston has...Ch. 6 - Prob. 6PCh. 6 - Prob. 7PCh. 6 - Prob. 8PCh. 6 - Prob. 9PCh. 6 - Prob. 10PCh. 6 - Prob. 11PCh. 6 - Prob. 12PCh. 6 - Prob. 13PCh. 6 - Prob. 14PCh. 6 - Prob. 15PCh. 6 - Prob. 16PCh. 6 - Prob. 17PCh. 6 - Prob. 1CSCh. 6 - Prob. 2CSCh. 6 - Prob. 3CSCh. 6 - Prob. 1.1VCCh. 6 - Prob. 1.2VCCh. 6 - Prob. 1.3VCCh. 6 - Prob. 1.4VCCh. 6 - Prob. 2.1VCCh. 6 - Prob. 2.2VCCh. 6 - Prob. 2.3VCCh. 6 - Prob. 2.4VCCh. 6 - Prob. 3.1VCCh. 6 - Prob. 3.2VCCh. 6 - Prob. 3.3VCCh. 6 - Prob. 3.4VCCh. 6 - Prob. 3.5VC
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, operations-management and related others by exploring similar questions and additional content below.Similar questions
- Describe how to construct process control charts and use them to determine whether a process is out of statistical control.arrow_forwardA Quality Analyst wants to construct a control chart for determining whether three machines, all producing the same product, are under control with regard to a particular quality variable. Accordingly, he sampled four units of output from each machine, with the following results: Machine Measurements #1 17 15 15 17 #2 16 25 18 25 # 3 23 24 23 22 What is the estimate of the process mean for whenever it is under control? What is the sample average range based upon this limited sample? What are the x-bar chart upper and lower control limits?arrow_forwardAt Gleditsia Triacanthos Company, a certain manufactured part is deemed acceptable if its length is between 12.45 to 12.55 inches. The process is normally distributed with an average of 12.49 inches and a standard deviation of 0.014 inches. a) is the process capable of meeting specifications? b) Does the process meet specifications?arrow_forward
- 6 of 11 5 3. The manager of a building-supplies company randomly samples incoming lumber to see whether it meets quality specifications. From each shipment, 100 pieces of 2 x 4 lumber are inspected and judged according to whether they are first (acceptable) or second (defective) grade. The proportions of second-grade 2 x 4s recorded for 30 shipments were as follows: a. Construct a control chart for the proportion of second-grade 2 x 4s in samples of 100 pieces of lumber. b. Explain how the control chart can be of use to the manager of the building supplies company. Shipment No. Proportion of second grade 1 0.14 2 0.22 3 0.21 4 0.15 0.19 0.26 7 0.18 8 0.22 9 0.23 10 0.21 11 0.2 12 0.14 13 0.25 14 0.2 15 0.19 16 0.18 17 0.22 18 0.22 19 0.17 20 0.21 21 0.21 22 0.13 23 0.15 24 0.2 25 0.23 26 0.23 27 0.12 28 0.19 29 0.19 30 0.26arrow_forwardA process considered to be in control measures an ingredient in ounces. A quality inspector took 10 samples, each with 5 observations as follows: Using this information, obtain three-sigma (i.e., z=3) control limits for a mean control chart and control limits for a range chart, respectively. It is known from previous experience that the standard deviation of the process is 1.36. Discuss whether the process is in control or not.arrow_forwardHow is a process operating in statistical control distinguished from one that is notarrow_forward
- Management at Webster Chemical Company is concerned as to whether caulking tubes are being properly capped. If a significant proportion of the tubes are not being sealed, Webster is placing its customers in a messy situation. Tubes are packaged in large boxes of 135. Several boxes are inspected, and the following numbers of leaking tubes are found: View an example Sample 1 2 3 Get more help. 4 Tubes 7 7 8 5 1 5 6 7 Calculate p-chart three-sigma control limits to assess whether the capping process is in statistical control. The UCL, equals 1 Sample 8 8 9 10 11 12 13 14 Tubes 7 2 4 8 6 9 MacBook Pro 3 Sample 15 16 17 18 19 20 Total Tubes 8 3 3 5 and the LCL equals (Enter your responses rounded to three decimal places. If your answer for LCL, is negative, enter this value as 0.) 3 6 104 Clear all Check answer Oarrow_forwardRefer to Table S6.1 - Factors for Computing Control Chart Limits (3 sigma) for this problem. Twelve samples, each containing five parts, were taken from a process that produces steel rods at Emmanual Kodzi's factory. The length of each rod in the samples was determined. The results were tabulated and sample means and ranges were computed. The results were: Sample Mean (in.) Range (in.) Sample Sample Sample Mean (in.) Range (in.) 1 9.404 0.044 7 9.403 0.021 2 9.402 0.051 8 9.405 0.058 3 9.393 0.042 9.395 0.039 4 9.404 0.037 10 9.401 0.038 9.399 0.048 11 9.401 0.054 9.397 0.053 12 9.404 0.061 For the given data, the x = inches (round your response to four decimal places). Based on the sampling done, the control limits for 3-sigma x chart are: Upper Control Limit (UCL;) = inches (round your response to four decimal places). Lower Control Limit (LCL;) = inches (round your response to four decimal places).arrow_forwardExplain how to construct process control chart and use them to determine whether a process is out of statistical control?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,Operations ManagementOperations ManagementISBN:9781259667473Author:William J StevensonPublisher:McGraw-Hill EducationOperations and Supply Chain Management (Mcgraw-hi...Operations ManagementISBN:9781259666100Author:F. Robert Jacobs, Richard B ChasePublisher:McGraw-Hill Education
- Purchasing and Supply Chain ManagementOperations ManagementISBN:9781285869681Author:Robert M. Monczka, Robert B. Handfield, Larry C. Giunipero, James L. PattersonPublisher:Cengage LearningProduction and Operations Analysis, Seventh Editi...Operations ManagementISBN:9781478623069Author:Steven Nahmias, Tava Lennon OlsenPublisher:Waveland Press, Inc.
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,
Operations Management
Operations Management
ISBN:9781259667473
Author:William J Stevenson
Publisher:McGraw-Hill Education
Operations and Supply Chain Management (Mcgraw-hi...
Operations Management
ISBN:9781259666100
Author:F. Robert Jacobs, Richard B Chase
Publisher:McGraw-Hill Education
Purchasing and Supply Chain Management
Operations Management
ISBN:9781285869681
Author:Robert M. Monczka, Robert B. Handfield, Larry C. Giunipero, James L. Patterson
Publisher:Cengage Learning
Production and Operations Analysis, Seventh Editi...
Operations Management
ISBN:9781478623069
Author:Steven Nahmias, Tava Lennon Olsen
Publisher:Waveland Press, Inc.