Toshow :what would it mean a break even point for a business has no solution.
Explanation of Solution
Given information: system of equations which on solving gives no solution.
Solution:The break even point for a business can be calculated on dividing the fixed cost of production by the difference between price per unit and the variable cost of production and is shown as,
Systems of equation does not mean that all the time we will get the solution. While interms of business, this means that no matter what value you put in for the variable, there's always a dispute. In business, no matter how we apply the best resources and process or extra efforts it will always remain unpredictable and the result may or may not be in our favour.
There is no net loss or gain in the business when break even point has no solution even though the opportunity costs have been paid and capital has received the risk-adjusted
Chapter 6 Solutions
EP ALGEBRA 1-ETEXT ACCESS
Additional Math Textbook Solutions
Elementary Statistics: Picturing the World (7th Edition)
Calculus for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
Introductory Statistics
Calculus: Early Transcendentals (2nd Edition)
Calculus: Early Transcendentals (2nd Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
- Thank you.arrow_forwardThank you.arrow_forwardLet V, W, and Y be vector spaces. Suppose dim(V) dim(W) = dim(Y) = 2. = Let ("beta") be an ordered basis for V. Let ("gamma") be an ordered basis for W. Let ("zeta") be an ordered basis for Y. Suppose S is a linear transformation from V to W and that T is a linear trans- formation from W to Y. Remember that ToS is the function from V to Y defined by (TOS)(v) = T(S(v)). (a) Prove that To S is a linear transformation. (b) Prove that ° [T • S] = [T]{[S]}.arrow_forward
- Let W={(0, a, 0) | a Є R}. (a) List four elements from W. (b) Determine whether W is a subspace of R³, and prove that your answer is correct.arrow_forwardFor this problem, refer to the network as shown in Figure 1, answer the following questions. B A C FIGURE 1. For Problem (7). Let x₁ be the number of users at website A. Let x2 be the number of users at website B. Let x3 be the number of users at website C. Assume that there are a total of 900 users at these three websites. This gives us the following system of linear equations: x1 = x2 + 1x3 x2 = x1 + x3 x3 = x2 = 900 x1 + x2 + x3 = (a) Put this system into a standard form (with all variables on the left side and with the constants on the right), and convert that system into an augmented matrix, and then... (b) Use elementary row operations to put the augmented matrix into reduced row echelon form, and then... (c) Write down the solution space for this system of equations, and then... (d) Identify which website(s) would be ranked most highly by PageRank.arrow_forward4 2 Let C = -6 -3 (a) Find det(C). (b) Use your answer for (a) to determine whether C is invertible.arrow_forward
- Algebra and Trigonometry (6th Edition)AlgebraISBN:9780134463216Author:Robert F. BlitzerPublisher:PEARSONContemporary Abstract AlgebraAlgebraISBN:9781305657960Author:Joseph GallianPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra And Trigonometry (11th Edition)AlgebraISBN:9780135163078Author:Michael SullivanPublisher:PEARSONIntroduction to Linear Algebra, Fifth EditionAlgebraISBN:9780980232776Author:Gilbert StrangPublisher:Wellesley-Cambridge PressCollege Algebra (Collegiate Math)AlgebraISBN:9780077836344Author:Julie Miller, Donna GerkenPublisher:McGraw-Hill Education