To determine if it is possible for the system to have infinitely many solutions if the graphs of the equations are not same.
Answer to Problem 18CT
No, it is not possible
Explanation of Solution
Given:
A system of equation:
where
A system of equations has 3 forms:
- Consistent system: The equations have only one solution and their graphs intersect at only one point (unique solution).
- Dependent system: The equations have infinitely many solutions and their graphs are coinciding.
- Inconsistent system: The equations have no solution and their graphs are parallel or non-intersecting.
It is not possible for the system to have infinitely many solutions if their graphs are not the same line.
Conclusion:
Therefore, for a system to have infinitely many solutions, the graphs must be coinciding.
Hence it is not possible for a system to have infinitely many solutions and not having same graph.
Chapter 6 Solutions
EP ALGEBRA 1-ETEXT ACCESS
Additional Math Textbook Solutions
University Calculus: Early Transcendentals (4th Edition)
Calculus: Early Transcendentals (2nd Edition)
Introductory Statistics
Thinking Mathematically (6th Edition)
College Algebra with Modeling & Visualization (5th Edition)
- Thank you.arrow_forwardThank you.arrow_forwardLet V, W, and Y be vector spaces. Suppose dim(V) dim(W) = dim(Y) = 2. = Let ("beta") be an ordered basis for V. Let ("gamma") be an ordered basis for W. Let ("zeta") be an ordered basis for Y. Suppose S is a linear transformation from V to W and that T is a linear trans- formation from W to Y. Remember that ToS is the function from V to Y defined by (TOS)(v) = T(S(v)). (a) Prove that To S is a linear transformation. (b) Prove that ° [T • S] = [T]{[S]}.arrow_forward
- Let W={(0, a, 0) | a Є R}. (a) List four elements from W. (b) Determine whether W is a subspace of R³, and prove that your answer is correct.arrow_forwardFor this problem, refer to the network as shown in Figure 1, answer the following questions. B A C FIGURE 1. For Problem (7). Let x₁ be the number of users at website A. Let x2 be the number of users at website B. Let x3 be the number of users at website C. Assume that there are a total of 900 users at these three websites. This gives us the following system of linear equations: x1 = x2 + 1x3 x2 = x1 + x3 x3 = x2 = 900 x1 + x2 + x3 = (a) Put this system into a standard form (with all variables on the left side and with the constants on the right), and convert that system into an augmented matrix, and then... (b) Use elementary row operations to put the augmented matrix into reduced row echelon form, and then... (c) Write down the solution space for this system of equations, and then... (d) Identify which website(s) would be ranked most highly by PageRank.arrow_forward4 2 Let C = -6 -3 (a) Find det(C). (b) Use your answer for (a) to determine whether C is invertible.arrow_forward
- Algebra and Trigonometry (6th Edition)AlgebraISBN:9780134463216Author:Robert F. BlitzerPublisher:PEARSONContemporary Abstract AlgebraAlgebraISBN:9781305657960Author:Joseph GallianPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra And Trigonometry (11th Edition)AlgebraISBN:9780135163078Author:Michael SullivanPublisher:PEARSONIntroduction to Linear Algebra, Fifth EditionAlgebraISBN:9780980232776Author:Gilbert StrangPublisher:Wellesley-Cambridge PressCollege Algebra (Collegiate Math)AlgebraISBN:9780077836344Author:Julie Miller, Donna GerkenPublisher:McGraw-Hill Education