THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
9th Edition
ISBN: 9781266657610
Author: CENGEL
Publisher: MCG CUSTOM
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 6.11, Problem 30P
What is the difference between a refrigerator and a heat pump?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Please do not rely too much on chatgpt, because its answer may be wrong. Please consider it carefully and give your own answer. You can borrow ideas from gpt, but please do not believe its answer.Very very grateful!
Please do not copy other's work,i will be very very grateful!!
(8) Figure Q8 shows a T cross-section of a T beam which is constructed from three metal plates each having a width of 12 mm and sectional lengths of X=85 mm, Y=77 mm and Z=107 mm, where the plates are used for the web section, and
the two flange sections respectively, as illustrated in Figure Q8.
Calculate the neutral axis of the T-beam cross-section (as measured from the base) in units of millimetres, stating your answer to the nearest 1 decimal place.
Z mm
Y mm
12 mm
X mm
Figure Q8
12 mm
12 mm
(2) Figure Q2 shows a 10 m long beam which has a concentrated load of X=95 KN located at the position A on the beam (x=0 m) as well as another load Z=42 kN at the end of the beam at
position E (x=10 m). There is also a Uniform Distributed Load (UDL) of loading Y=84 kN/m which starts at position C (x=5 m) and ends at position D (x=7 m). There are two reaction pivots:
- a left one located at B (x=3 m) and a right pivot located at D (x=7 m).
Calculate the reaction force RD experienced by the pivot at the position D in terms of kilo-Newtons to 1 decimal place.
X KN
A
2m
B
2m
C
Y kN/m
2m
Figure Q2
D
D
4m
Z kN
E
Chapter 6 Solutions
THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
Ch. 6.11 - A mechanic claims to have developed a car engine...Ch. 6.11 - Describe an imaginary process that violates both...Ch. 6.11 - Describe an imaginary process that satisfies the...Ch. 6.11 - Describe an imaginary process that satisfies the...Ch. 6.11 - An experimentalist claims to have raised the...Ch. 6.11 - Consider the process of baking potatoes in a...Ch. 6.11 - Prob. 7PCh. 6.11 - What are the characteristics of all heat engines?Ch. 6.11 - What is the KelvinPlanck expression of the second...Ch. 6.11 - Is it possible for a heat engine to operate...
Ch. 6.11 - Does a heat engine that has a thermal efficiency...Ch. 6.11 - In the absence of any friction and other...Ch. 6.11 - Are the efficiencies of all the work-producing...Ch. 6.11 - Baseboard heaters are basically electric...Ch. 6.11 - Consider a pan of water being heated (a) by...Ch. 6.11 - A heat engine has a total heat input of 1.3 kJ and...Ch. 6.11 - A steam power plant receives heat from a furnace...Ch. 6.11 - A heat engine has a heat input of 3 104 Btu/h and...Ch. 6.11 - A 600-MW steam power plant, which is cooled by a...Ch. 6.11 - A heat engine with a thermal efficiency of 45...Ch. 6.11 - A heat engine that propels a ship produces 500...Ch. 6.11 - A steam power plant with a power output of 150 MW...Ch. 6.11 - An automobile engine consumes fuel at a rate of 22...Ch. 6.11 - Solar energy stored in large bodies of water,...Ch. 6.11 - A coal-burning steam power plant produces a net...Ch. 6.11 - An Ocean Thermal Energy Conversion (OTEC) power...Ch. 6.11 - Prob. 27PCh. 6.11 - Prob. 29PCh. 6.11 - What is the difference between a refrigerator and...Ch. 6.11 - Prob. 31PCh. 6.11 - Define the coefficient of performance of a...Ch. 6.11 - Define the coefficient of performance of a heat...Ch. 6.11 - Prob. 34PCh. 6.11 - A refrigerator has a COP of 1.5. That is, the...Ch. 6.11 - In a refrigerator, heat is transferred from a...Ch. 6.11 - A heat pump is a device that absorbs energy from...Ch. 6.11 - What is the Clausius expression of the second law...Ch. 6.11 - Show that the KelvinPlanck and the Clausius...Ch. 6.11 - The coefficient of performance of a residential...Ch. 6.11 - A food freezer is to produce a 5-kW cooling...Ch. 6.11 - An automotive air conditioner produces a 1-kW...Ch. 6.11 - A food refrigerator is to provide a 15,000-kJ/h...Ch. 6.11 - Prob. 44PCh. 6.11 - Determine the COP of a heat pump that supplies...Ch. 6.11 - Prob. 46PCh. 6.11 - A heat pump with a COP of 1.4 is to produce a...Ch. 6.11 - An air conditioner removes heat steadily from a...Ch. 6.11 - A household refrigerator that has a power input of...Ch. 6.11 - When a man returns to his well-sealed house on a...Ch. 6.11 - Water enters an ice machine at 55F and leaves as...Ch. 6.11 - A refrigerator is used to cool water from 23 to 5C...Ch. 6.11 - A household refrigerator runs one-fourth of the...Ch. 6.11 - Consider an office room that is being cooled...Ch. 6.11 - A house that was heated by electric resistance...Ch. 6.11 - Refrigerant-134a enters the condenser of a...Ch. 6.11 - Refrigerant-134a enters the evaporator coils...Ch. 6.11 - An inventor claims to have developed a resistance...Ch. 6.11 - Prob. 60PCh. 6.11 - Why are engineers interested in reversible...Ch. 6.11 - A cold canned drink is left in a warmer room where...Ch. 6.11 - A block slides down an inclined plane with...Ch. 6.11 - Prob. 64PCh. 6.11 - Prob. 65PCh. 6.11 - Show that processes that use work for mixing are...Ch. 6.11 - Why does a nonquasi-equilibrium compression...Ch. 6.11 - Prob. 68PCh. 6.11 - Prob. 69PCh. 6.11 - What are the four processes that make up the...Ch. 6.11 - Prob. 71PCh. 6.11 - Prob. 72PCh. 6.11 - Prob. 73PCh. 6.11 - Somebody claims to have developed a new reversible...Ch. 6.11 - Is there any way to increase the efficiency of a...Ch. 6.11 - Consider two actual power plants operating with...Ch. 6.11 - You are an engineer in an electric-generation...Ch. 6.11 - Prob. 78PCh. 6.11 - A thermodynamicist claims to have developed a heat...Ch. 6.11 - A heat engine is operating on a Carnot cycle and...Ch. 6.11 - A completely reversible heat engine operates with...Ch. 6.11 - An inventor claims to have developed a heat engine...Ch. 6.11 - A Carnot heat engine operates between a source at...Ch. 6.11 - A heat engine is operating on a Carnot cycle and...Ch. 6.11 - A heat engine operates between a source at 477C...Ch. 6.11 - An experimentalist claims that, based on his...Ch. 6.11 - In tropical climates, the water near the surface...Ch. 6.11 - Prob. 89PCh. 6.11 - Prob. 90PCh. 6.11 - Prob. 91PCh. 6.11 - Prob. 92PCh. 6.11 - How can we increase the COP of a Carnot...Ch. 6.11 - In an effort to conserve energy in a heat-engine...Ch. 6.11 - Prob. 95PCh. 6.11 - Prob. 96PCh. 6.11 - A thermodynamicist claims to have developed a heat...Ch. 6.11 - Determine the minimum work per unit of heat...Ch. 6.11 - Prob. 99PCh. 6.11 - An air-conditioning system operating on the...Ch. 6.11 - A heat pump operates on a Carnot heat pump cycle...Ch. 6.11 - An air-conditioning system is used to maintain a...Ch. 6.11 - A Carnot refrigerator absorbs heat from a space at...Ch. 6.11 - Prob. 104PCh. 6.11 - A Carnot refrigerator operates in a room in which...Ch. 6.11 - Prob. 106PCh. 6.11 - A commercial refrigerator with refrigerant-134a as...Ch. 6.11 - Prob. 108PCh. 6.11 - A heat pump is to be used for heating a house in...Ch. 6.11 - A completely reversible heat pump has a COP of 1.6...Ch. 6.11 - A Carnot heat pump is to be used to heat a house...Ch. 6.11 - A Carnot heat engine receives heat from a...Ch. 6.11 - Prob. 113PCh. 6.11 - Derive an expression for the COP of a completely...Ch. 6.11 - Calculate and plot the COP of a completely...Ch. 6.11 - Prob. 116PCh. 6.11 - Prob. 117PCh. 6.11 - Prob. 118PCh. 6.11 - Someone proposes that the entire...Ch. 6.11 - Prob. 120PCh. 6.11 - Prob. 121PCh. 6.11 - Prob. 122PCh. 6.11 - It is commonly recommended that hot foods be...Ch. 6.11 - It is often stated that the refrigerator door...Ch. 6.11 - Prob. 125RPCh. 6.11 - Prob. 126RPCh. 6.11 - Prob. 127RPCh. 6.11 - A Carnot heat pump is used to heat and maintain a...Ch. 6.11 - A refrigeration system uses a water-cooled...Ch. 6.11 - A refrigeration system is to cool bread loaves...Ch. 6.11 - A heat pump with a COP of 2.8 is used to heat an...Ch. 6.11 - Prob. 132RPCh. 6.11 - Consider a Carnot heat-engine cycle executed in a...Ch. 6.11 - Prob. 134RPCh. 6.11 - Consider a Carnot refrigeration cycle executed in...Ch. 6.11 - Prob. 137RPCh. 6.11 - Consider two Carnot heat engines operating in...Ch. 6.11 - A heat engine operates between two reservoirs at...Ch. 6.11 - An old gas turbine has an efficiency of 21 percent...Ch. 6.11 - Prob. 141RPCh. 6.11 - Prob. 142RPCh. 6.11 - Prob. 143RPCh. 6.11 - The drinking water needs of a production facility...Ch. 6.11 - Prob. 145RPCh. 6.11 - Prob. 147RPCh. 6.11 - Prob. 148RPCh. 6.11 - Prob. 149RPCh. 6.11 - Prob. 150RPCh. 6.11 - Prob. 151RPCh. 6.11 - A heat pump with refrigerant-134a as the working...Ch. 6.11 - Prob. 153RPCh. 6.11 - Prob. 155RPCh. 6.11 - Prob. 156RPCh. 6.11 - Prob. 157RPCh. 6.11 - Prove that a refrigerators COP cannot exceed that...Ch. 6.11 - Consider a Carnot refrigerator and a Carnot heat...Ch. 6.11 - A 2.4-m-high 200-m2 house is maintained at 22C by...Ch. 6.11 - A window air conditioner that consumes 1 kW of...Ch. 6.11 - The drinking water needs of an office are met by...Ch. 6.11 - The label on a washing machine indicates that the...Ch. 6.11 - A heat pump is absorbing heat from the cold...Ch. 6.11 - A heat engine cycle is executed with steam in the...Ch. 6.11 - A heat pump cycle is executed with R134a under the...Ch. 6.11 - A refrigeration cycle is executed with R-134a...Ch. 6.11 - A heat pump with a COP of 3.2 is used to heat a...Ch. 6.11 - A heat engine cycle is executed with steam in the...Ch. 6.11 - A heat engine receives heat from a source at 1000C...Ch. 6.11 - An air-conditioning system operating on the...Ch. 6.11 - A refrigerator is removing heat from a cold medium...Ch. 6.11 - Two Carnot heat engines are operating in series...Ch. 6.11 - A typical new household refrigerator consumes...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Select the valid option from the list below. E F G 20 kN RAX = ?? KN 30° 30° 30° 30° 30° 30° A B D RAY = ?? KN A The solution to the problem is found to be -10.0 kN. B. The solution to the problem is found to be -20.0 KN. ○ C. The solution to the problem is found to be +11.5 kN. D. The solution to the problem is found to be +23.1 kN. E. No Valid Answer Roy = ?? KNarrow_forwardPlease do not rely too much on chatgpt, because its answer may be wrong. Please consider it carefully and give your own answer. You can borrow ideas from gpt, but please do not believe its answer.Very very grateful! Please do not copy other's work,i will be very very grateful!!arrow_forwardAnswer by selecting the correct options from the following multichoice selection. ப 4m B A C D 3m 3 m Figure Q17 FL 12 kN E 16 KN A. We should resolve forces in the horizontal direction to easily identify the internal force DF. B. The solution to the problem is found to be -16 kN (C). C. We should resolve forces in the vertical direction to first identify the internal force DF. D. We should use Method of Joints at node F to find the internal force in member DF. E. We should Method of Sections by cutting through members DF, DE and CE. F. The starting point to solve this problem is to find all reactions at nodes A and B as they will be required for DF calculations. G. The solution to the problem is found to be 16 kN (T). H. The most appropriate method to find DF use is Method of Joints. I. The most appropriate method to use is Method of Sections. J. A good starting point to solve this problem is to find the horizontal reaction at node B but this is not required to the internal forcearrow_forward
- H 2 kN K 2 kN M N www RAY RAX A G B C D E F 3 m ↑ RGY 4m Fill in the multiple blanks. Figure Q19 Finding the vertical reactions is the starting point which can be done by taking moments at A and G but since this is symmetrical loading case the vertical reactions can simply be calculated by halving the total loading 4 kN. Ideally, we can solve the problem using the Method of cutting through the members JK, DJ and It would be sensible to select the left-hand side of the diagram as there are less full members and only one force from the reaction at node A. This will expose the internal forces which can be labelled with the names of the members themselves. Since we are required to find JK, examining the framework shows it is not a straight-forward matter, and we will require finding all three unknown internal forces. The easiest internal force to find is Next, we can take moments at node , as we can resolve forces in the vertical direction. in order to find the internal force JK and find…arrow_forwardPlease do not rely too much on chatgpt, because its answer may be wrong. Please consider it carefully and give your own answer. You can borrow ideas from gpt, but please do not believe its answer.Very very grateful! Please do not copy other's work,i will be very very grateful!!arrow_forwardPlease do not rely too much on chatgpt, because its answer may be wrong. Please consider it carefully and give your own answer. You can borrow ideas from gpt, but please do not believe its answer.Very very grateful! Please do not copy other's work,i will be very very grateful!!arrow_forward
- Please do not rely too much on chatgpt, because its answer may be wrong. Please consider it carefully and give your own answer. You can borrow ideas from gpt, but please do not believe its answer.Very very grateful! Please do not copy other's work,i will be very very grateful!!arrow_forward(19) Figure Q19 shows a framework consisting of horizontal members 3 m long and vertical members 4 m long. The framework is loaded at joints J and L with downward load forces of 2 kN. The applied forces cause a vertical reaction forces at A and G and no horizontal reaction force. You are asked to find the internal force in member JK - what would be your approach to solve this problem? Explain your solution process and some of your results by filling in the blanks below. 2 kN 2 kN H RAY RAX A K M N B C D E F 3 m 1 RGY 4m Fill in the multiple blanks. Figure Q19 Finding the vertical reactions is the starting point which can be done by taking moments at A and G but since this is symmetrical loading case the vertical reactions can simply be calculated by halving the total loading 4 kN. Ideally, we can solve the problem using the Method of cutting through the members JK, DJ and It would be sensible to select the left-hand side of the diagram as there are less full members and only one force…arrow_forward4m A 72 kN C E B D F 144 kN 3 m 3 m 3 m Figure Q16 Fill in the multiple blanks below. To find the reactions the starting point is to take moments at a suitable node location. Since node unknowns it is the ideal location to first take moments. By taking moments in a clockwise orientation we find a moment of there is an additional moment of 288 kNm from the load at C. From combining all moments together, we can then find the vertical reaction at F which is RFy= place. For best practice, it is a good approach to take moments at has two kNm due to the force load at node B and KN to 1 decimal in order to the find the vertical reaction RAY- Finally, we can sum forces in the horizontal direction to find the reaction RAX = -72 kN, assuming the reaction at A acts left-to-right. After which we can then sum forces in the vertical direction to verify the sum of RAY plus Rgy is the same as the total downwards force which should be KN.arrow_forward
- Please do not rely too much on chatgpt, because its answer may be wrong. Please consider it carefully and give your own answer. You can borrow ideas from gpt, but please do not believe its answer.Very very grateful! Please do not copy other's work,i will be very very grateful!!arrow_forward10 kN A B 1m RBY 20 kN/m 30 kN с D E 1m 1m 1m Find the vertical reaction Rgy at B Figure Q18 Find the vertical reaction REY at E Verify the reactions Rgy and REY are valid ✓ Find the Bending Moment value at C You could find the Bending Moment value at B شه A. by finding the area on the Shear Force graph left of B (treating areas underneath the x-axis as negative). B. by taking moments at B. C. by taking moments of all forces left of C. D. by taking moments at E. E. by summing all forces in a vertical direction.arrow_forwardPlease do not rely too much on chatgpt, because its answer may be wrong. Please consider it carefully and give your own answer. You can borrow ideas from gpt, but please do not believe its answer.Very very grateful! Please do not copy other's work,i will be very very grateful!!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage LearningPrinciples of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY