
Interpretation:
The fact that the spectral lines of Lyman and Balmer series do not overlap each other is to be verified by calculating longest wavelength associated with Lyman series and shortest wavelength associated with Balmer series.
Concept introduction:
Lyman series is a hydrogen spectral series of transitions and resulting ultraviolet emission lines of the hydrogen atom as an electron go from
On the other hand, the series of spectral emission lines of the hydrogen atom that result from electron transitions from higher levels down to the energy level with principal quantum number
The energy of the electron in hydrogen atom is as follows:
Here, n is considered as an integer and
The energy difference of the two states of an element is represented as:
Here, h is the Planck’s constant,

Answer to Problem 98AP
Solution: The spectral lines of Lyman and Balmer series do not overlap each other.
Explanation of Solution
The Planck’s constant is
The
The Lyman series deals with the excitation in first orbit.
The energy for the longest wavelength will be when the electron jumps from the second orbit to the Lyman series orbit.
So, the initial state
The energy of the electron in Lyman series orbit will be as follows:
Substitute 2 for
Calculate the wavelength as follows:
Rearrange the above equation as follows:
Substitute
Convert meter to nanometer as follows:
So, the longest wavelength of Lyman series is
The Balmer series deals with the excitation in second orbit.
The energy for the shortest wavelength will be when the electron jumps from the second orbit to the Lyman series orbit.
So, the initial state
The energy of the electron in Balmer series orbit will be:
Substitute
Calculate the wavelength as follows:
Rearrange the above equation as follows:
Substitute
Convert meter to nanometer as follows:
So, the shortest wavelength of Balmer series is
The spectral lines of Lyman and Balmer series do not overlap each other.
Want to see more full solutions like this?
Chapter 6 Solutions
Chemistry
- Calculate the pH and the pOH of each of the following solutions at 25 °C for which the substances ionize completely: (a) 0.000259 M HClO4arrow_forwardWhat is the pH of a 1.0 L buffer made with 0.300 mol of HF (Ka = 6.8 × 10⁻⁴) and 0.200 mol of NaF to which 0.160 mol of NaOH were added?arrow_forwardDetermine if the following salt is neutral, acidic or basic. If acidic or basic, write the appropriate equilibrium equation for the acid or base that exists when the salt is dissolved in aqueous solution. If neutral, simply write only NR. Be sure to include the proper phases for all species within the reaction. NaN₃arrow_forward
- A. Draw the structure of each of the following alcohols. Then draw and name the product you would expect to produce by the oxidation of each. a. 4-Methyl-2-heptanol b. 3,4-Dimethyl-1-pentanol c. 4-Ethyl-2-heptanol d. 5,7-Dichloro-3-heptanolarrow_forwardWhat is the pH of a 1.0 L buffer made with 0.300 mol of HF (Ka = 6.8 × 10⁻⁴) and 0.200 mol of NaF to which 0.160 mol of NaOH were added?arrow_forwardCan I please get help with this.arrow_forward
- Determine if the following salt is neutral, acidic or basic. If acidic or basic, write the appropriate equilibrium equation for the acid or base that exists when the salt is dissolved in aqueous solution. If neutral, simply write only NR. Be sure to include the proper phases for all species within the reaction. N₂H₅ClO₄arrow_forwardPlease help me with identifying these.arrow_forwardCan I please get help with this?arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning




