University Physics Volume 1
18th Edition
ISBN: 9781938168277
Author: William Moebs, Samuel J. Ling, Jeff Sanny
Publisher: OpenStax - Rice University
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 90P
(a) What is the final velocity of a car originally traveling at 50.0 km/h that decelerates at a rate of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Someone at the other end of the table asks you to pass the salt. Feeling quite dashing, you slide the 50.0-g salt shaker inthat direction, giving it an initial speed of 1.15 m>s. (a) If the shaker comes to rest with constant acceleration in 0.840 m,what is the coefficient of kinetic friction between the shaker and the table? (b) How much time is required for the shakerto come to rest if you slide it with an initial speed of 1.32 m>s?
A skater with an initial speed of 5.90m/s stops propelling himself and begins to coast across the ice, eventually coming to rest. Air resistance is negligible.
(a) The coefficient of kinetic friction between the ice and the skate blades is 0.125. Find the deceleration caused by kinetic friction.
(b) How far will the skater travel before coming to rest?
A car weighing 2.5 metric tons and traveling at 90 km/h hits a 500 m long stretch of black
ice. Unfortunately, due to skidding, neither accelerating nor braking has any effect on the
speed! The driver manages to maintain steady straight direction of motion and the only
impact is provided by the ice friction force, which is numerically equal to 4v² Newtons, where
the velocity v of the car is measured in m/sec.
(a) Using Newton's Second Law F = ma, set up a mathematical model for the position
x(t) and velocity v(t) of the car as functions of time t. Start by drawing a diagram and
choosing a consistent system of units based on kg, m, sec (1 ton = 1000 kg, 1 m/sec =
3.6 km/h, 1 N = 1 kg · m/sec²). Introduce and label the variables, show the units and
write down the differential equations and the intial conditions.
(b) Use the model in part a to calculate v(t) and x(t). Fully show the process of solving the
initial value problems.
(c) Based on your work so far, how long will it take to pass…
Chapter 6 Solutions
University Physics Volume 1
Ch. 6 - Check Your Understanding Now calculate the scale...Ch. 6 - Check Your Understanding Calculate the...Ch. 6 - Check Your Understanding Determine a general...Ch. 6 - Check Your Understanding The soccer player stops...Ch. 6 - Check Your Understanding Find the direction of the...Ch. 6 - Check Your Understanding If atmospheric resistance...Ch. 6 - Check Your Understanding A block of mass 1.0 kg...Ch. 6 - Check Your Understanding The snowboarder is now...Ch. 6 - Check Your Understanding A car moving at 96.8 km/h...Ch. 6 - Check Your Understanding Find the terminal...
Ch. 6 - Check Your Understanding suppose the resistive...Ch. 6 - Solving Problems with Newton’s Laws To sirmulate...Ch. 6 - Friction The glue on a piece of tape can exert...Ch. 6 - When you learn to drive, you discover that you...Ch. 6 - When you push a pices of chalk across a...Ch. 6 - A physics major is cooking breakfast en she...Ch. 6 - Centripetal Force If you wish to reduce the stress...Ch. 6 - Define centripetal force. Can any type of force...Ch. 6 - If centripetal force is directed toward the...Ch. 6 - Race car drivers routinely cut corners, as shown...Ch. 6 - Many amusement parks have rides that make vertical...Ch. 6 - What causes water to be removed from clothes in a...Ch. 6 - As a skater forms a circle, what force is...Ch. 6 - Suppose a child is riding on a merry-go-round at a...Ch. 6 - Do you feel yourself thro to either side when you...Ch. 6 - Suppose a mass is moving in a circular path on a...Ch. 6 - When a toilet is flushed or a sink Is drained, the...Ch. 6 - A car rounds a curve and encounters a patch of ice...Ch. 6 - In one amusement park ride, riders enter a large...Ch. 6 - Two friends are having a conversation. Anna says a...Ch. 6 - A nonrotating frame of reference placed at the...Ch. 6 - Athletes such as swimmers and bicyclists wear body...Ch. 6 - Two expressions were used for the drag force...Ch. 6 - As cars travel, oil and gasoline leaks onto the...Ch. 6 - Why can a squirrel jump from a tree branch to the...Ch. 6 - Solving Problems with Newton’s Laws A 30.0-kg girl...Ch. 6 - Find the tension in each of the three cables...Ch. 6 - Three forces act on an object, considered to be a...Ch. 6 - A flea jumps by exerting a force of...Ch. 6 - Two muscles in the back of the leg pull upward on...Ch. 6 - After a mishap, a 76.0-kg circus performer clings...Ch. 6 - A 35.0-kg dolphin decelerates from 12.0 to 7.50 m/...Ch. 6 - When starting a foot race, a 70.0-kg sprinter...Ch. 6 - A large rocket has a mass of 2.00106kgat takeoff,...Ch. 6 - A basketball player jumps straight up for a ball....Ch. 6 - A 2.50-kg fireworks shell is fired straight up...Ch. 6 - A 0.500-kg potato is fired at an angle of 80.0...Ch. 6 - An elevator filled with passengers has a mass of...Ch. 6 - A 20.O-g ball hangs from the roof of a freight car...Ch. 6 - A student’s backpack, full of textbooks, is hung...Ch. 6 - A service elevator takes a load of garbage, mass...Ch. 6 - A roller coaster car starts from rest at the top...Ch. 6 - The device shown below is the Atwood’s machine...Ch. 6 - Two blocks are connected by a massless rope as...Ch. 6 - Shown below are two carts connected by a cord that...Ch. 6 - A 2.00 kg block (mass 1) and a 4.00 kg block (mass...Ch. 6 - Friction (a) When rebuilding his car’s engine, a...Ch. 6 - (a) What is the maximum frictional force in the...Ch. 6 - Suppose you have a 120-kg wooden crate resting on...Ch. 6 - (a) If half of the weight of a small...Ch. 6 - A team of eight dogs pulls a sled with waxed wood...Ch. 6 - Consider the 65.0-kg ice skater being pushed by...Ch. 6 - Show that the acceleration of any object down a...Ch. 6 - Show that the acceleration of any object down an...Ch. 6 - Calculate the deceleration of a snow boarder going...Ch. 6 - A machine at a post office sends packages out a...Ch. 6 - If an object is to rest o an incline without...Ch. 6 - Calculate the maximum acceleration of a car that...Ch. 6 - Calculate the maximum acceleration of a car that...Ch. 6 - Repeat the preceding problem for a car with four-...Ch. 6 - A freight train consists of two 8.00105kgengines...Ch. 6 - Consider the 52.0-kg mountain climber shown below....Ch. 6 - A contestant in a winter sporting event pushes a...Ch. 6 - The contestant now pulls the block of ice with a...Ch. 6 - At a post office, a parcel that is a 20.0-kg box...Ch. 6 - (a) A 22.0-kg child is riding a playground...Ch. 6 - Calculate the centripetal force on the end of a...Ch. 6 - What Is the ideal banking angle for a gentle turn...Ch. 6 - What is the ideal speed to take a 100.0-m-radius...Ch. 6 - (a) What is the radius of a bobsled turn banked at...Ch. 6 - Part of riding a bicycle involves leaning at the...Ch. 6 - If a car takes a banked curve at less than the...Ch. 6 - Modem roller coasters have vertical loops like the...Ch. 6 - A child of mass 40.0 kg is in a roller coaster car...Ch. 6 - In the simple Bohr model of the ground state of...Ch. 6 - Railroad tracks follow a circular curve of radius...Ch. 6 - The CERN particle accelerator is circular with a...Ch. 6 - A car rounds an unbanked curve of radius 65 m. If...Ch. 6 - A banked highway is designed for traffic moving at...Ch. 6 - Drag Force and Terminal Speed The terminal...Ch. 6 - A 60.0-kg and a 90.0-kg skydiver jump from an...Ch. 6 - A 560-g squirrel with a surface area of...Ch. 6 - To maintain a constant speed, the force provided...Ch. 6 - By what factor does the drag force on a car...Ch. 6 - Calculate the velocity a spherical rain drop would...Ch. 6 - Using Stokes’ law, verify that the units for...Ch. 6 - Find the terminal velocity of a spherical...Ch. 6 - Stokes’ law describes sedimentation of particles...Ch. 6 - Suppose that the resistive force of the air on a...Ch. 6 - A small diamond of mass 10.0 g drops from a...Ch. 6 - (a) What is the final velocity of a car originally...Ch. 6 - A 75.0-kg man stands on a bathroom scale in an...Ch. 6 - (a) Calculate the minimum coefficient of friction...Ch. 6 - As shown below, if M=5.50kg , what is the tension...Ch. 6 - As shown below, if F=60.0Nand M=4.00kg, what is...Ch. 6 - As shown below, if M=6.0kg, what is the tension in...Ch. 6 - A small space probe Is released from a spaceship....Ch. 6 - A half-full recycling bin has mass 10 kg and is...Ch. 6 - A child has mass 6.0 kg and slides down a...Ch. 6 - The two barges shown here are coupled by a cable...Ch. 6 - If the order of the barges of the preceding...Ch. 6 - An object with mass m moves along the x -axis. Its...Ch. 6 - A helicopter with mass 2.35104kg has a position...Ch. 6 - Located at the origin, an electric car of mass mis...Ch. 6 - A particle of mass mis located at the origin. It...Ch. 6 - A 2.0-kg object has a velocity of at t=0 . A...Ch. 6 - A 1.5-kg mass has an acceleration of (4.0 i 3.0 j...Ch. 6 - A box is dropped onto a conveyor belt moving at...Ch. 6 - Shown below is a 10.0-kg block being pushed by a...Ch. 6 - As shown below, the mass of block 1 is m1=4.0kg ....Ch. 6 - A student is attempting to move a 30-kg...Ch. 6 - A crate of mass 100.0 kg rests on a rough surface...Ch. 6 - A car is moving at high speed along a highway when...Ch. 6 - A crate having mass 50.0 kg falls horizontally off...Ch. 6 - A 15-kg sled is pulled across a horizontal,...Ch. 6 - A 30.O-g ball at the end of a stung is swung in a...Ch. 6 - A particle of mass 0.50 kg starts moves through a...Ch. 6 - A stunt cyclist rides on the interior of a...Ch. 6 - When a body of mass 0.25 kg is attached to a...Ch. 6 - A piece of bacon starts to slide down the pan when...Ch. 6 - A plumb bob bangs from the roof of a railroad car....Ch. 6 - An airplane flies at 120.0 m/s and banks at a...Ch. 6 - The position of a particle is given by r(t)=A(cost...Ch. 6 - Two blocks connected by a string are pulled across...Ch. 6 - As shown below, the coefficient of kinetic...Ch. 6 - In the figure, the coefficient of kinetic friction...Ch. 6 - Two blocks are stacked as shown below, and rest on...Ch. 6 - A box rests on the (horizontal) back of a truck....Ch. 6 - A double-incline plane is shown below. The...Ch. 6 - In a later chapter, you will find that the weight...Ch. 6 - A large centrifuge, like the one shown below, is...Ch. 6 - A car of mass 1000.0 kg is traveling along a level...Ch. 6 - An airplane flying at 200.0 m/s makes a turn that...Ch. 6 - A skydiver is at an altitude of 1520 m. After 10.0...Ch. 6 - In a television commercial, a small, spherical...Ch. 6 - A boater and motor boat ate at rest on a lake....
Additional Science Textbook Solutions
Find more solutions based on key concepts
The correct option.
Glencoe Physical Science 2012 Student Edition (Glencoe Science) (McGraw-Hill Education)
Express the unit vectors in terms of (that is, derive Eq. 1.64). Check your answers several ways Also work o...
Introduction to Electrodynamics
Figure Q18.8 shows E field lines in a region of space Select two correct statements about the E field and V fie...
College Physics
What class of motion, natural or violent, did Aristotle attribute to motion of the Moon?
Conceptual Physics (12th Edition)
Q30.8 For the same magnetic field strength B, is the energy density greater in vacuum or in a magnetic material...
University Physics (14th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A box with a mass of 5 kg accelerates its speed in a straight line, increasing it from 5 m/s to 8 m/s, due to the application of an external force acting for a duration of 2.0 s. Calculate the average strength of this force.arrow_forwardA 1370-kg car is skidding to a stop along a horizontal surface. The car decelerates from 27.6 m/s to a rest position in 3.15 seconds. Assuming negligible air resistance, determine the coefficient of friction between the car tires and the road surface.arrow_forwardA car with a mass of 1.3x10° kg is skidding to a stop along a horizontal surface. The car decelerates from 33 m/s to rest in 3.9 seconds. Assuming negligible air resistance, determine the coefficient of friction between the car tires and the road surface.arrow_forward
- A 20,000 kg truck is traveling down the highway at a speed of 29.1 m/s. Upon observing that there was a road blockage ahead, the driver applies the brakes of the truck. If the applied brake force is 11.1 kN causing a constant deceleration, determine the distance, in meters, required to come to a stop?arrow_forwardA hockey puck is hit on a frozen lake and starts moving with a speed of 12.3 m/s. Five seconds later, its speed is 6.60 m/s. (a) What is its average acceleration? (b) What is the average value of the coefficient of kinetic friction between puck and ice? (c) How far does the puck travel during the 5.00 s interval?arrow_forwardAn engine exerts a force of 8000 N on a 1000 kg car travelling over a flat road (with coefficient of friction μk). The force accelerates the car from 25 m/s to 40 m/s in 5 s. Find, (a) the net acceleration of the car, and (b) μk between the car and the road?arrow_forward
- A 101 kg fullback runs at the line of scrimmage. (a) Find the constant force that must be exerted on him to bring him to rest in a distance of 1.1 m in a time interval of 0.28 s. (b) How fast was he initially running?arrow_forwardA car of mass 875 kg is traveling 30.0 m/s when the driver applies the brakes, which lock the wheels. The car skids for 5.60 s in the positive xdirection before coming to rest. (a) What is the car's acceleration? (b) What magnitude force acted on the car during this time? (c) How far did the car travel?arrow_forwardA proton moves with an initial velocity of 10 m/s and travels a distance of 20 m, on the x-axis, in 8 seconds. (a) What acceleration do you have assuming it is constant? (b) What force was applied to the particle?arrow_forward
- Professional Application: A woodpecker’s brain is specially protected from large decelerations by tendon-like attachments inside the skull. While pecking on a tree, the woodpecker’s head comes to a stop from an initial velocity of 0.600 m/s in a distance of only 2.00 mm. (a) Find the acceleration in and in m/s multiples of g (g = 9.80 m/s). (b) Calculate the stopping time. (c) The tendons cradling the brain stretch, making its stopping distance 4.50 mm (greater than the head and, hence, less deceleration of the brain). What is the brain’s deceleration, expressed in multiples of ?arrow_forwardA stock car accelerated from rest down a track length d=400.0m. In the absence of any friction the stock car gas a constant acceleration of a=26 m/s^2 in the direction of motion, and it’s mass is m= 990 kg. Assum the stock car is moving in the positive horizontal direction. (A) consider the existence of rolling friction, which causes a total resistive force with magnitude Fr in the stock car. Write and expression for the work done by this force over a distance d. (B) give an expression for the total kinetic energy of the stock car, Ed, in the presence of rolling friction after it travels a distance d. (C) what is the stock cars final speed, in meters per second, assuming fr=1000 N?arrow_forwardA ball with mass 0.15 kg is thrown upward with initial velocity 20 m/s from the roof of a building 30 m high. There is a force due to air resistance of v2/1325 , where the velocity v is measured in m/s. (a) Find the maximum height above the ground that the ball reaches. (b) Find the time that the ball hits the ground. Step by step solution please.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY