University Physics Volume 1
18th Edition
ISBN: 9781938168277
Author: William Moebs, Samuel J. Ling, Jeff Sanny
Publisher: OpenStax - Rice University
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 89P
A small diamond of mass 10.0 g drops from a swimmers earring and falls through the water, reaching a terminal velocity of 2.0 m/s. (a) Assuming the frictional force on the diamond obeys
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A small diamond of mass 10.0 g drops from a swimmer’s earring and falls through the water, reaching a terminal velocity of 2.0 m/s. (a) Assuming the frictional force on the diamond obeys f = −bv, what is b? (b) How far does the diamond fall before it reaches 90 percent of its terminal speed?
You are driving through the Ouachita Mountains at 12m/s. You see a maple-leaf oak (Quercus acerifolia) crossing the road and hit the brakes, 20m away. The coefficient of kinetic friction between your tires and the road is μ_k = 0.7. Will you strike this endangered broadleaf? Justify your answer with a calculation.Your final answer should be the distance you will travel before coming to a stop.
A block of mass m =1 kg, slides
down a rough incline with constant
velocity. The coefficient of kinetic
friction between the block and the
incline is µr, and the incline makes
an angle 0 = 30°
horizontal. Take g = 10 m/s2. The
coefficient of kinetic friction µ is
then equal to:
v= constant
with
the
O 0.577
O 0.466
O 0.422
O 0.364
Chapter 6 Solutions
University Physics Volume 1
Ch. 6 - Check Your Understanding Now calculate the scale...Ch. 6 - Check Your Understanding Calculate the...Ch. 6 - Check Your Understanding Determine a general...Ch. 6 - Check Your Understanding The soccer player stops...Ch. 6 - Check Your Understanding Find the direction of the...Ch. 6 - Check Your Understanding If atmospheric resistance...Ch. 6 - Check Your Understanding A block of mass 1.0 kg...Ch. 6 - Check Your Understanding The snowboarder is now...Ch. 6 - Check Your Understanding A car moving at 96.8 km/h...Ch. 6 - Check Your Understanding Find the terminal...
Ch. 6 - Check Your Understanding suppose the resistive...Ch. 6 - Solving Problems with Newton’s Laws To sirmulate...Ch. 6 - Friction The glue on a piece of tape can exert...Ch. 6 - When you learn to drive, you discover that you...Ch. 6 - When you push a pices of chalk across a...Ch. 6 - A physics major is cooking breakfast en she...Ch. 6 - Centripetal Force If you wish to reduce the stress...Ch. 6 - Define centripetal force. Can any type of force...Ch. 6 - If centripetal force is directed toward the...Ch. 6 - Race car drivers routinely cut corners, as shown...Ch. 6 - Many amusement parks have rides that make vertical...Ch. 6 - What causes water to be removed from clothes in a...Ch. 6 - As a skater forms a circle, what force is...Ch. 6 - Suppose a child is riding on a merry-go-round at a...Ch. 6 - Do you feel yourself thro to either side when you...Ch. 6 - Suppose a mass is moving in a circular path on a...Ch. 6 - When a toilet is flushed or a sink Is drained, the...Ch. 6 - A car rounds a curve and encounters a patch of ice...Ch. 6 - In one amusement park ride, riders enter a large...Ch. 6 - Two friends are having a conversation. Anna says a...Ch. 6 - A nonrotating frame of reference placed at the...Ch. 6 - Athletes such as swimmers and bicyclists wear body...Ch. 6 - Two expressions were used for the drag force...Ch. 6 - As cars travel, oil and gasoline leaks onto the...Ch. 6 - Why can a squirrel jump from a tree branch to the...Ch. 6 - Solving Problems with Newton’s Laws A 30.0-kg girl...Ch. 6 - Find the tension in each of the three cables...Ch. 6 - Three forces act on an object, considered to be a...Ch. 6 - A flea jumps by exerting a force of...Ch. 6 - Two muscles in the back of the leg pull upward on...Ch. 6 - After a mishap, a 76.0-kg circus performer clings...Ch. 6 - A 35.0-kg dolphin decelerates from 12.0 to 7.50 m/...Ch. 6 - When starting a foot race, a 70.0-kg sprinter...Ch. 6 - A large rocket has a mass of 2.00106kgat takeoff,...Ch. 6 - A basketball player jumps straight up for a ball....Ch. 6 - A 2.50-kg fireworks shell is fired straight up...Ch. 6 - A 0.500-kg potato is fired at an angle of 80.0...Ch. 6 - An elevator filled with passengers has a mass of...Ch. 6 - A 20.O-g ball hangs from the roof of a freight car...Ch. 6 - A student’s backpack, full of textbooks, is hung...Ch. 6 - A service elevator takes a load of garbage, mass...Ch. 6 - A roller coaster car starts from rest at the top...Ch. 6 - The device shown below is the Atwood’s machine...Ch. 6 - Two blocks are connected by a massless rope as...Ch. 6 - Shown below are two carts connected by a cord that...Ch. 6 - A 2.00 kg block (mass 1) and a 4.00 kg block (mass...Ch. 6 - Friction (a) When rebuilding his car’s engine, a...Ch. 6 - (a) What is the maximum frictional force in the...Ch. 6 - Suppose you have a 120-kg wooden crate resting on...Ch. 6 - (a) If half of the weight of a small...Ch. 6 - A team of eight dogs pulls a sled with waxed wood...Ch. 6 - Consider the 65.0-kg ice skater being pushed by...Ch. 6 - Show that the acceleration of any object down a...Ch. 6 - Show that the acceleration of any object down an...Ch. 6 - Calculate the deceleration of a snow boarder going...Ch. 6 - A machine at a post office sends packages out a...Ch. 6 - If an object is to rest o an incline without...Ch. 6 - Calculate the maximum acceleration of a car that...Ch. 6 - Calculate the maximum acceleration of a car that...Ch. 6 - Repeat the preceding problem for a car with four-...Ch. 6 - A freight train consists of two 8.00105kgengines...Ch. 6 - Consider the 52.0-kg mountain climber shown below....Ch. 6 - A contestant in a winter sporting event pushes a...Ch. 6 - The contestant now pulls the block of ice with a...Ch. 6 - At a post office, a parcel that is a 20.0-kg box...Ch. 6 - (a) A 22.0-kg child is riding a playground...Ch. 6 - Calculate the centripetal force on the end of a...Ch. 6 - What Is the ideal banking angle for a gentle turn...Ch. 6 - What is the ideal speed to take a 100.0-m-radius...Ch. 6 - (a) What is the radius of a bobsled turn banked at...Ch. 6 - Part of riding a bicycle involves leaning at the...Ch. 6 - If a car takes a banked curve at less than the...Ch. 6 - Modem roller coasters have vertical loops like the...Ch. 6 - A child of mass 40.0 kg is in a roller coaster car...Ch. 6 - In the simple Bohr model of the ground state of...Ch. 6 - Railroad tracks follow a circular curve of radius...Ch. 6 - The CERN particle accelerator is circular with a...Ch. 6 - A car rounds an unbanked curve of radius 65 m. If...Ch. 6 - A banked highway is designed for traffic moving at...Ch. 6 - Drag Force and Terminal Speed The terminal...Ch. 6 - A 60.0-kg and a 90.0-kg skydiver jump from an...Ch. 6 - A 560-g squirrel with a surface area of...Ch. 6 - To maintain a constant speed, the force provided...Ch. 6 - By what factor does the drag force on a car...Ch. 6 - Calculate the velocity a spherical rain drop would...Ch. 6 - Using Stokes’ law, verify that the units for...Ch. 6 - Find the terminal velocity of a spherical...Ch. 6 - Stokes’ law describes sedimentation of particles...Ch. 6 - Suppose that the resistive force of the air on a...Ch. 6 - A small diamond of mass 10.0 g drops from a...Ch. 6 - (a) What is the final velocity of a car originally...Ch. 6 - A 75.0-kg man stands on a bathroom scale in an...Ch. 6 - (a) Calculate the minimum coefficient of friction...Ch. 6 - As shown below, if M=5.50kg , what is the tension...Ch. 6 - As shown below, if F=60.0Nand M=4.00kg, what is...Ch. 6 - As shown below, if M=6.0kg, what is the tension in...Ch. 6 - A small space probe Is released from a spaceship....Ch. 6 - A half-full recycling bin has mass 10 kg and is...Ch. 6 - A child has mass 6.0 kg and slides down a...Ch. 6 - The two barges shown here are coupled by a cable...Ch. 6 - If the order of the barges of the preceding...Ch. 6 - An object with mass m moves along the x -axis. Its...Ch. 6 - A helicopter with mass 2.35104kg has a position...Ch. 6 - Located at the origin, an electric car of mass mis...Ch. 6 - A particle of mass mis located at the origin. It...Ch. 6 - A 2.0-kg object has a velocity of at t=0 . A...Ch. 6 - A 1.5-kg mass has an acceleration of (4.0 i 3.0 j...Ch. 6 - A box is dropped onto a conveyor belt moving at...Ch. 6 - Shown below is a 10.0-kg block being pushed by a...Ch. 6 - As shown below, the mass of block 1 is m1=4.0kg ....Ch. 6 - A student is attempting to move a 30-kg...Ch. 6 - A crate of mass 100.0 kg rests on a rough surface...Ch. 6 - A car is moving at high speed along a highway when...Ch. 6 - A crate having mass 50.0 kg falls horizontally off...Ch. 6 - A 15-kg sled is pulled across a horizontal,...Ch. 6 - A 30.O-g ball at the end of a stung is swung in a...Ch. 6 - A particle of mass 0.50 kg starts moves through a...Ch. 6 - A stunt cyclist rides on the interior of a...Ch. 6 - When a body of mass 0.25 kg is attached to a...Ch. 6 - A piece of bacon starts to slide down the pan when...Ch. 6 - A plumb bob bangs from the roof of a railroad car....Ch. 6 - An airplane flies at 120.0 m/s and banks at a...Ch. 6 - The position of a particle is given by r(t)=A(cost...Ch. 6 - Two blocks connected by a string are pulled across...Ch. 6 - As shown below, the coefficient of kinetic...Ch. 6 - In the figure, the coefficient of kinetic friction...Ch. 6 - Two blocks are stacked as shown below, and rest on...Ch. 6 - A box rests on the (horizontal) back of a truck....Ch. 6 - A double-incline plane is shown below. The...Ch. 6 - In a later chapter, you will find that the weight...Ch. 6 - A large centrifuge, like the one shown below, is...Ch. 6 - A car of mass 1000.0 kg is traveling along a level...Ch. 6 - An airplane flying at 200.0 m/s makes a turn that...Ch. 6 - A skydiver is at an altitude of 1520 m. After 10.0...Ch. 6 - In a television commercial, a small, spherical...Ch. 6 - A boater and motor boat ate at rest on a lake....
Additional Science Textbook Solutions
Find more solutions based on key concepts
47. Show that 50 W of power is required to give a brick 100 J of PE in a time of 2 s.
Conceptual Physical Science (6th Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
Using the definitions in Eqs. 1.1 and 1.4, and appropriate diagrams, show that the dot product and cross produc...
Introduction to Electrodynamics
49. A gray kangaroo can bound across level ground with each jump carrying it 10 m from the takeoff point. Typic...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Explain all answers clearly, using complete sentence and proper essay structure if needed. An asterisk (*) desi...
The Cosmic Perspective Fundamentals (2nd Edition)
What are the external forces exerted on system C during the collision? What is the net force on system C?
Tutorials in Introductory Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 75.0-g arrow, fired at a speed of 110 m/s to the left, impacts a tree, which it penetrates to a depth of 12.5 cm before coming to a stop. Assuming the force of friction exerted by the tree is constant, what are the magnitude and direction of the friction force acting on the arrow?arrow_forwardLet us make the (unrealistic) assumption that a boat of mass m gliding with initial velocity v0 in water is slowed by a viscous retarding force of magnitude bv2, where b is a constant, (a) Find and sketch v(t). How long does it take the boat to reach a speed of v0/l000? (b) Find x(t). How far does the boat travel in this time? Let m = 200 kg, v0 = 2 m/s, and b = 0.2 Nm-2s2.arrow_forwardThe x and y coordinates of a 4.00-kg particle moving in the xy plane under the influence of a net force F are given by x = t4 6t and y = 4t2 + 1, with x and y in meters and t in seconds. What is the magnitude of the force F at t = 4.00 s?arrow_forward
- A 0.30 kg puck is being pushed across a table with a horizontal force of 2.0 N. It starts from rest and is pushed for 13 seconds, ending with a speed of 1 m/s. Calculate the coefficient of friction μk between the puck and the table.arrow_forwardA parachutist (mass, m = 85 kg including parachute) has an initial velocity, v0 = 52.8 ms-1, immediately after the parachute opens. The drag force provided the parachute varies as a function of velocity, such that Fd = kv2 where k = 13.7 kg/m. Calculate the time it takes in seconds for the velocity to reach half the initial velocity. What is the maximum speed (terminal velocity) in km/h of the parachutist when the parachute is open?arrow_forwardThe figure shows a container of mass m1 = 4.9 kg connected to a block of mass m2 by a cord looped around a frictionless pulley. The cord and pulley have negligible mass. When the container is released from rest, it accelerates at 2.2 m/s? across the horizontal frictionless surface. What are (a) the tension in the cord and (b) mass m2? (al Number Units The absolute tolerance is ± 0.1. (b) Number Units This answer has no units * (degrees) Save for Later Attempts: 0 of 3 used Submit Answer m kg m/s m/s^2 N/m kg-m/s or N-s N/m^2 or Pa kg/m^3 m/s^3 timesarrow_forward
- A 5.00 kg box sits at rest at the bottom of a ramp that is 8.00 m long and is inclined at 30 degrees above the horizontal. The coefficent of kinetic friction between the box and the surface is 0.40, and coefficent of static friction is 0.43. What constant force F, applied parallel to the surface of the ramp, is required to push the box to the top of the ramp in a time of 6.00 seconds?arrow_forwardA box of mass 3.6 kg is given an initial speed of vo = 7.1 m/s along a ramp as indicated in the figure (0 = 65.5°). m If the coefficient of kinetic friction between the box and the ramp is u = 0.72, find the magnitude of the acceleration of the box. (in m/s^2)arrow_forwardYou find it takes 190 N of horizontal force to move an unloaded pickup truck along a level road at a speed of 2.4 m/s . You then load up the pickup and pump up its tires so that its total weight increases by 42%while the coefficient of rolling friction decreases by 19%. Now what horizontal force will you need to move the pickup along the same road at the same speed? The speed is low enough that you can ignore air resistance..arrow_forward
- At the local hockey rink,a puck with a mass of 0.12 kg is given an initial speed of v = 5.3 m>s.(a) If the coefficient of kinetic friction between the ice and the puckis 0.11, what distance d does the puck slide before coming to rest?(b) If the mass of the puck is doubled, does the frictional force Fexerted on the puck increase, decrease, or stay the same? Explain.(c) Does the stopping distance of the puck increase, decrease, orstay the same when its mass is doubled? Explain. (d) For the situation considered in part (a), show that Fd = 12mv2. (In Chapter 7we will see 12mv2 is the kinetic energy of an object.)arrow_forwardA box is given a push so that it slides across the floor. How far will it go, given that the coefficient of kinetic friction is 0.18 and the push imparts an initial speed of 3.9 m/sm/s ? Express your answer to two significant figures and include the appropriate units.arrow_forwardA 110 g hockey puck sent sliding over ice is stopped in 15 m by the frictional force on it from the ice. (a) If its initial speed is 6.0 m/s, what is the magnitude of the frictional force? (b) What is the coefficient of friction between the puck and the ice?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY