University Physics Volume 1
18th Edition
ISBN: 9781938168277
Author: William Moebs, Samuel J. Ling, Jeff Sanny
Publisher: OpenStax - Rice University
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 6, Problem 125AP
In the figure, the coefficient of kinetic friction between the surface and the blocks is
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A crate is pushed across a horizontal surface by the
applied force shown in the figure. The magnitude of the
force F = 24.1 N, 0 = 27.9°, the coefficient of kinetic friction
between the block and the surface is 0.4, and M = 2.49 kg,
what is the magnitude of the acceleration of the crate in
m/s?
You are pushing a rubber crate against a concrete floor. The two surfaces have a static coefficient of friction of 0.61 and a kinetic coefficient of friction of 0.49. The floor is horizontal, and the crate has a mass of 25.0 kg, and is initially at rest. You are pushing with a horizontal force of 100 N. What is the magnitude of the force of friction in this case? Give your answer in units of N, to three significant figures.
You are pushing a rubber crate against a concrete floor. The two surfaces have a static coefficient of friction of 0.66 and a kinetic coefficient of friction of 0.52. The floor is horizontal, and the crate has a mass of 25.0 kg, and is initially at rest. You are pushing with a horizontal force of 85 N. What is the magnitude of the force of friction in this case? Give your answer in units of N, to three significant figures.
You are pushing a wooden crate against a rubber floor. The two surfaces have a static coefficient of friction of 0.54 and a kinetic coefficient of friction of 0.42. The floor is horizontal, and the crate has a mass of 25.0 kg, and is initially at rest. You are pushing with a horizontal force of 135 N. What is the magnitude of the force of friction in this case? Give your answer in units of N, to three significant figures.
Chapter 6 Solutions
University Physics Volume 1
Ch. 6 - Check Your Understanding Now calculate the scale...Ch. 6 - Check Your Understanding Calculate the...Ch. 6 - Check Your Understanding Determine a general...Ch. 6 - Check Your Understanding The soccer player stops...Ch. 6 - Check Your Understanding Find the direction of the...Ch. 6 - Check Your Understanding If atmospheric resistance...Ch. 6 - Check Your Understanding A block of mass 1.0 kg...Ch. 6 - Check Your Understanding The snowboarder is now...Ch. 6 - Check Your Understanding A car moving at 96.8 km/h...Ch. 6 - Check Your Understanding Find the terminal...
Ch. 6 - Check Your Understanding suppose the resistive...Ch. 6 - Solving Problems with Newton’s Laws To sirmulate...Ch. 6 - Friction The glue on a piece of tape can exert...Ch. 6 - When you learn to drive, you discover that you...Ch. 6 - When you push a pices of chalk across a...Ch. 6 - A physics major is cooking breakfast en she...Ch. 6 - Centripetal Force If you wish to reduce the stress...Ch. 6 - Define centripetal force. Can any type of force...Ch. 6 - If centripetal force is directed toward the...Ch. 6 - Race car drivers routinely cut corners, as shown...Ch. 6 - Many amusement parks have rides that make vertical...Ch. 6 - What causes water to be removed from clothes in a...Ch. 6 - As a skater forms a circle, what force is...Ch. 6 - Suppose a child is riding on a merry-go-round at a...Ch. 6 - Do you feel yourself thro to either side when you...Ch. 6 - Suppose a mass is moving in a circular path on a...Ch. 6 - When a toilet is flushed or a sink Is drained, the...Ch. 6 - A car rounds a curve and encounters a patch of ice...Ch. 6 - In one amusement park ride, riders enter a large...Ch. 6 - Two friends are having a conversation. Anna says a...Ch. 6 - A nonrotating frame of reference placed at the...Ch. 6 - Athletes such as swimmers and bicyclists wear body...Ch. 6 - Two expressions were used for the drag force...Ch. 6 - As cars travel, oil and gasoline leaks onto the...Ch. 6 - Why can a squirrel jump from a tree branch to the...Ch. 6 - Solving Problems with Newton’s Laws A 30.0-kg girl...Ch. 6 - Find the tension in each of the three cables...Ch. 6 - Three forces act on an object, considered to be a...Ch. 6 - A flea jumps by exerting a force of...Ch. 6 - Two muscles in the back of the leg pull upward on...Ch. 6 - After a mishap, a 76.0-kg circus performer clings...Ch. 6 - A 35.0-kg dolphin decelerates from 12.0 to 7.50 m/...Ch. 6 - When starting a foot race, a 70.0-kg sprinter...Ch. 6 - A large rocket has a mass of 2.00106kgat takeoff,...Ch. 6 - A basketball player jumps straight up for a ball....Ch. 6 - A 2.50-kg fireworks shell is fired straight up...Ch. 6 - A 0.500-kg potato is fired at an angle of 80.0...Ch. 6 - An elevator filled with passengers has a mass of...Ch. 6 - A 20.O-g ball hangs from the roof of a freight car...Ch. 6 - A student’s backpack, full of textbooks, is hung...Ch. 6 - A service elevator takes a load of garbage, mass...Ch. 6 - A roller coaster car starts from rest at the top...Ch. 6 - The device shown below is the Atwood’s machine...Ch. 6 - Two blocks are connected by a massless rope as...Ch. 6 - Shown below are two carts connected by a cord that...Ch. 6 - A 2.00 kg block (mass 1) and a 4.00 kg block (mass...Ch. 6 - Friction (a) When rebuilding his car’s engine, a...Ch. 6 - (a) What is the maximum frictional force in the...Ch. 6 - Suppose you have a 120-kg wooden crate resting on...Ch. 6 - (a) If half of the weight of a small...Ch. 6 - A team of eight dogs pulls a sled with waxed wood...Ch. 6 - Consider the 65.0-kg ice skater being pushed by...Ch. 6 - Show that the acceleration of any object down a...Ch. 6 - Show that the acceleration of any object down an...Ch. 6 - Calculate the deceleration of a snow boarder going...Ch. 6 - A machine at a post office sends packages out a...Ch. 6 - If an object is to rest o an incline without...Ch. 6 - Calculate the maximum acceleration of a car that...Ch. 6 - Calculate the maximum acceleration of a car that...Ch. 6 - Repeat the preceding problem for a car with four-...Ch. 6 - A freight train consists of two 8.00105kgengines...Ch. 6 - Consider the 52.0-kg mountain climber shown below....Ch. 6 - A contestant in a winter sporting event pushes a...Ch. 6 - The contestant now pulls the block of ice with a...Ch. 6 - At a post office, a parcel that is a 20.0-kg box...Ch. 6 - (a) A 22.0-kg child is riding a playground...Ch. 6 - Calculate the centripetal force on the end of a...Ch. 6 - What Is the ideal banking angle for a gentle turn...Ch. 6 - What is the ideal speed to take a 100.0-m-radius...Ch. 6 - (a) What is the radius of a bobsled turn banked at...Ch. 6 - Part of riding a bicycle involves leaning at the...Ch. 6 - If a car takes a banked curve at less than the...Ch. 6 - Modem roller coasters have vertical loops like the...Ch. 6 - A child of mass 40.0 kg is in a roller coaster car...Ch. 6 - In the simple Bohr model of the ground state of...Ch. 6 - Railroad tracks follow a circular curve of radius...Ch. 6 - The CERN particle accelerator is circular with a...Ch. 6 - A car rounds an unbanked curve of radius 65 m. If...Ch. 6 - A banked highway is designed for traffic moving at...Ch. 6 - Drag Force and Terminal Speed The terminal...Ch. 6 - A 60.0-kg and a 90.0-kg skydiver jump from an...Ch. 6 - A 560-g squirrel with a surface area of...Ch. 6 - To maintain a constant speed, the force provided...Ch. 6 - By what factor does the drag force on a car...Ch. 6 - Calculate the velocity a spherical rain drop would...Ch. 6 - Using Stokes’ law, verify that the units for...Ch. 6 - Find the terminal velocity of a spherical...Ch. 6 - Stokes’ law describes sedimentation of particles...Ch. 6 - Suppose that the resistive force of the air on a...Ch. 6 - A small diamond of mass 10.0 g drops from a...Ch. 6 - (a) What is the final velocity of a car originally...Ch. 6 - A 75.0-kg man stands on a bathroom scale in an...Ch. 6 - (a) Calculate the minimum coefficient of friction...Ch. 6 - As shown below, if M=5.50kg , what is the tension...Ch. 6 - As shown below, if F=60.0Nand M=4.00kg, what is...Ch. 6 - As shown below, if M=6.0kg, what is the tension in...Ch. 6 - A small space probe Is released from a spaceship....Ch. 6 - A half-full recycling bin has mass 10 kg and is...Ch. 6 - A child has mass 6.0 kg and slides down a...Ch. 6 - The two barges shown here are coupled by a cable...Ch. 6 - If the order of the barges of the preceding...Ch. 6 - An object with mass m moves along the x -axis. Its...Ch. 6 - A helicopter with mass 2.35104kg has a position...Ch. 6 - Located at the origin, an electric car of mass mis...Ch. 6 - A particle of mass mis located at the origin. It...Ch. 6 - A 2.0-kg object has a velocity of at t=0 . A...Ch. 6 - A 1.5-kg mass has an acceleration of (4.0 i 3.0 j...Ch. 6 - A box is dropped onto a conveyor belt moving at...Ch. 6 - Shown below is a 10.0-kg block being pushed by a...Ch. 6 - As shown below, the mass of block 1 is m1=4.0kg ....Ch. 6 - A student is attempting to move a 30-kg...Ch. 6 - A crate of mass 100.0 kg rests on a rough surface...Ch. 6 - A car is moving at high speed along a highway when...Ch. 6 - A crate having mass 50.0 kg falls horizontally off...Ch. 6 - A 15-kg sled is pulled across a horizontal,...Ch. 6 - A 30.O-g ball at the end of a stung is swung in a...Ch. 6 - A particle of mass 0.50 kg starts moves through a...Ch. 6 - A stunt cyclist rides on the interior of a...Ch. 6 - When a body of mass 0.25 kg is attached to a...Ch. 6 - A piece of bacon starts to slide down the pan when...Ch. 6 - A plumb bob bangs from the roof of a railroad car....Ch. 6 - An airplane flies at 120.0 m/s and banks at a...Ch. 6 - The position of a particle is given by r(t)=A(cost...Ch. 6 - Two blocks connected by a string are pulled across...Ch. 6 - As shown below, the coefficient of kinetic...Ch. 6 - In the figure, the coefficient of kinetic friction...Ch. 6 - Two blocks are stacked as shown below, and rest on...Ch. 6 - A box rests on the (horizontal) back of a truck....Ch. 6 - A double-incline plane is shown below. The...Ch. 6 - In a later chapter, you will find that the weight...Ch. 6 - A large centrifuge, like the one shown below, is...Ch. 6 - A car of mass 1000.0 kg is traveling along a level...Ch. 6 - An airplane flying at 200.0 m/s makes a turn that...Ch. 6 - A skydiver is at an altitude of 1520 m. After 10.0...Ch. 6 - In a television commercial, a small, spherical...Ch. 6 - A boater and motor boat ate at rest on a lake....
Additional Science Textbook Solutions
Find more solutions based on key concepts
* A car traveling at 10 m/s passes over a hill on a road that has a circular cross section of radius 30 m. What...
College Physics
How does the net work done on cart A(Wnet,A) compare to the net work done on cart B(Wnet,B) ? Explain. Is the k...
Tutorials in Introductory Physics
For Questions 3 through 1 0, give a specific example of a system with the energy transformation shown. In these...
College Physics: A Strategic Approach (4th Edition)
1. When is energy most evident?
Conceptual Physics (12th Edition)
71. A cylinder with a piston contains 0.250 mol of ideal oxygen at a pressure of 2.40 × 105 Pa and a temperatur...
College Physics (10th Edition)
Do all points on a rigid, rotating object have the same angular velocity? Linear speed? Radial acceleration?
Essential University Physics: Volume 1 (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- You are pushing a box, apply Fa = 90 N. The box's mass is 25 kg. The coefficients of friction are μs =0.60 and μk = 0.4. The box was stationary when you began pushing. Calculate the frictional force magnitude exerted on the box by the floorarrow_forwardFor Problems 1 and 2, use the following formula to describe the magnitude of a drag force: 1 D = — -CA pv² 2 FD Problem 1: When a car is traveling at a speed of 30 km/h, it experiences a drag force of magnitude F. If the car increases its speed to 40 km/h, what then will be the drag force it experiences? Assume the drag force is proportional to the square of speed.arrow_forwardYou are pushing a wooden crate against a rubber floor. The two surfaces have a static coefficient of friction of 0.45 and a kinetic coefficient of friction of 0.38. The floor is horizontal, and the crate has a mass of 25.0 kg, and is initially at rest. You are pushing with a horizontal force of 155 N. What is the magnitude of the force of friction in this case? Give your answer in units of N, to three significant figures.arrow_forward
- You are a bully. You pin a 48 kg dweeb to a wall so that his feet aren't touching the ground. Your arm is extended so that it makes an angle 28 degrees with the horizontal. The dweeb's back is so sweaty with fear that there is no friction between his back and the wall. What is the magnitude of the force , in N, you must apply to keep the dweeb in equilibrium? (Use g = 10 m/s2) This scenario is represented schematically below. Unfortunately for you, years later the dweeb is your boss and he makes your life miserable. (Please answer to the fourth decimal place - i.e 12.3445)arrow_forwardA block of mass m = 54 kg slides along a horizontal surface. The coefficient of friction between the block and the surface is μk = 0.37. The block has an initial speed of vo = 15 m/s in the positive x-direction as shown. Write an expression for the x-component of the frictional force the block experiences, Ff, in terms of the given variables and variables available in the palette. What is the magnitude of the frictional force in N? How far will the block travel, in meters, before coming to rest?arrow_forwardA block of mass 8.3 kg is initially at rest on a horizontal plane. The coefficients of kinetic and static friction between the plane and the block are respectivelyμc= 0.25 and μe= 0.36. Consider g = 10 m/s2 A horizontal force of magnitude F = 26.3 N is then applied to the block. In this situation, calculate the magnitude of the friction force (in N, to one decimal place).arrow_forward
- A desperate hiker has to think fast to help his friend who has fallen below him. Quickly, he ties a rope to a rock of mass ma and makes his way over the ledge (see the figure). If the coefficient of maximum static friction between the rock and the ground is µ, and the mass of the hiker is mâ, what is the maximum mass of the friend, mc, that the rock can hold so the hikers can then make their way up over the ledge? Assume the rope is parallel to the ground and the point where the rope passes over the ledge is frictionless. mc = Juarrow_forwardA 11 N horizontal force pushes a block weighing 5.4 N against a vertical wall (see the figure). The coefficient of static friction between the wall and the block is 0.56, and the coefficient of kinetic friction is 0.34. Assume that the block is not moving initially.(a) Will the block move? ("yes" or "no") (b) In unit-vector notation Fi + Fj, what is the force on the block from the wall? (a) (b) Number i î+ i Ĵ Unitsarrow_forwardIn the figure, a force P acts on a block weighing 45.0 N. The block is initially at rest on a plane inclined at angle = 18.0° to the horizontal. The positive direction of the x axis is up the plane. The coefficients of friction between block and plane are μ = 0.540 and Uk = 0.340. In unit-vector notation, what is the frictional force on the block from the plane when Pis (a) (-5.30 N)î, (b) (-8.10 N)î, and (c) (-15.1 N)? (a) Number i (b) Number i (c) Number i i+ i+ i i i+ i j Units j Units j Unitsarrow_forward
- An object weighing 500kg is to be pulled by a man by exerting a force P. Force P is inclined at an angle of 25 deg. measured from the positive axis. The object and the floor has a coefficient of friction: static = 0.35 and dynamic = 0.15. What is the magnitude of the velocity vector of the object after 5 seconds when the magnitude of P is equal to 8,000 N? Express your answer in unit of m/s What is the total distance travelled by the object after 5 seconds when the magnitude of P is equal to 8,000 N? Express your answer in unit of m.arrow_forwardChapter 06, Problem 026 GO Z Your answer is partially correct. Try again. The figure shows three crates being pushed over a concrete floor by a horizontal force F of magnitude 631 N. The masses of the crates are m, = 31.0 kg, m, = 10.0 kg, and m3 = 20.0 kg. The coefficient of kinetic friction between the floor and each of the crates is 0.700. What is the magnitude F32 of the force on crate 3 from crate 2? Number Units IN the tolerance is +/-2% Click if you would like to Show Work for this question: Open Show Work Question Attempts: Unlimited SAVE FOR LATER SUBMIT ANSWER 10:46 PM to search ENG 4/4/2021 13) pri sc pause (brea delte 17 insert %23 3 4 5. backspac Rarrow_forwardA block with a mass of 10.09 kg is placed on a ramp. The ramp has an incline of ? = 25.7 degrees from the horizontal. The static coefficient of friction between the block and ramp is μs = 0.211, and the kinetic coefficient of friction between the block and ramp is μk = 0.112. A force, F, is exerted on the block as shown. Note that the force F is parallel with the ramp. What is the smallest value (magnitude) for the force, F, in Newtons that can be exerted on the block to hold the block stationary on the ramp? What is the largest value (magnitude) for the force, F, in Newtons that can be exerted on the block while still holding the block stationary on the ramp? What value (magnitude) for the force, F, is needed to move the block up the ramp at a constant speed?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Drawing Free-Body Diagrams With Examples; Author: The Physics Classroom;https://www.youtube.com/watch?v=3rZR7FSSidc;License: Standard Youtube License