Consider the endothermic reaction:
a. increase
b. decrease
c. increase
d. increase temperature
e. decrease temperature
f. Increase pressure
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
General, Organic, and Biological Chemistry - 4th edition
Additional Science Textbook Solutions
Chemistry: An Introduction to General, Organic, and Biological Chemistry (12th Edition) - Standalone book
Chemistry: The Central Science (14th Edition)
Inorganic Chemistry
Chemistry
- . Consider the reaction 2CO(g)+O2(g)2CO2(g)Suppose the system is already at equilibrium, and then an additional mole of CO2(g) is injected into the system at constant temperature. Does the amount of O2(g) in the system increase or decrease? Does the value of K for the reaction change?arrow_forwardConsider the system 4 NH3(g) + 3 O2(g) ⇌ 2 N2(g) + 6 H20(ℓ) ΔrH° = −1530.4 kJ/mol How will the amount of ammonia at equilibrium be affected by removing O2(g) without changing the total gas volume? adding N2(g) without changing the total gas volume? adding water without changing the total gas volume? expanding the container? increasing the temperature? Which of these changes (i to v) increases the value of K? Which decreases it?arrow_forwardWater gas, a mixture of H2 and CO, is an important industrial fuel produced by the reaction of steam with red hot coke, essentially pure carbon. (a) Write the expression for the equilibrium constant for the reversible reaction C(s)+H2O(g)CO(g)+H2(g)H=131.30kJ (b) What will happen to the concentration of each reactant and product at equilibrium if more C is added? (c) What will happen to the concentration of each reactant and product at equilibrium if H2O is removed? (d) What will happen to the concentration of each reactant and product at equilibrium if CO is added? (e) What will happen to the concentration of each reactant and product at equilibrium if the temperature of the system is increased?arrow_forward
- The following equilibrium is established in a closed container: C(s)+O2(g)CO2(g)H=393kJmol1 How does the equilibrium shift in response to each of the following stresses? (a) The quantity of solid carbon is increased. (b) A small quantity of water is added, and CO2 dissolves in it. (c) The system is cooled. (d) The volume of the container is increased.arrow_forwardKp for the following reaction is 0.16 at 25 C: 2 NOBr(g) 2 NO(g) + Br2(g) The enthalpy change for the reaction at standard conditions is + 16.3 kJ/mol-rxn. Predict the effect of the following changes on the position of the equilibrium; that is, state which way the equilibrium will shift (left, right, or no change) when each of the following changes is made. (a) adding more Br2(g) (b) removing some NOBr(g) (c) decreasing the temperature (d) increasing the container volumearrow_forwardHydrogen for use in ammonia production is produced by the reaction CH4(g)+H2O(g)750oCNicatalystCO(g)+3H2(g) What will happen to a reaction mixture at equilibrium if a. H2O(g) is removed? b. the temperature is increased (the reaction is endothermic)? c. an inert gas is added to a rigid reaction container? d. CO(g) is removed? e. the volume of the container is tripled?arrow_forward
- . Consider an equilibrium mixture consisting of H2O(g), CO(g). H2(g), and CO2(g) reacting in a closed vessel according to the equation H2O(g)+CO(g)H2(g)+CO2(g)a. You add more H2O to the flask. How does the new equilibrium concentration of each chemical compare to its origin al equilibrium concentration after equilibrium is re-established? Justify your answer. b. You add more H2to the flask. How does the concentration of each chemical compare to its original concentration after equilibrium is re-established? Justify your answer.arrow_forwardPhosphorus pentachloride decomposes at elevated temperatures. PCl5(g) PCl3(g) + Cl2(g) An equilibrium mixture at some temperature consists of 3.120 g of PCl5, 3.845 g of PCl3, and 1.787 g of Cl2 in a 10.0-L flask. If you add 1.418 g of Cl2, how will the equilibrium be affected? What will the concentrations of PCl5, PCl3, and Cl2 be when equilibrium is reestablished?arrow_forwardConsider the reaction 2N2O(g) + O2(g) 4NO(g) Suppose the system is at equilibrium, and then an additional mole of N2O(g) is injected into the system at constant temperature. Once the reaction reestablishes equilibrium, has the amount of N2O increased or decreased from its original equilibrium amount? Explain. What happens to the value of the equilibrium constant with this change?arrow_forward
- Consider an equilibrium mixture of four chemicals (A. B. C. and D. all gases) reacting in a closed flask according to the following equation: A+BC+Da. You add more A to the flask. How does the concentration of each chemical compare to its original concentration after equilibrium is re-established? Justify your answer. h. You have the original set-up at equilibrium, and add more D to the flask. How does the concentration of each chemical compare to its original concentration after equilibrium is re-established? Justify your answer.arrow_forward. Consider the following exothermic reaction at equilibrium: N2(g)+3H2(g)2NH3(g)Predict how the following changes affect the number of moles of each component of the system after equilibrium is re-established by completing the table. Complete the table with the terms increase, decrease, or no change. N2 H2 NH3 Add N2(g) Remove H2(g) Add NH3(g) Add Ne(g) (constant V) Increase the temperature Decrease the volume (constant T) Add a catalystarrow_forwardThe following reaction occurs when a burner on a gas stove is lit: CH4+2O2(g)CO2(g)+2H2O(g) Is an equilibrium among CH4, O2, CO2, and H2O established under these conditions? Explain your answer.arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning