Consider the endothermic conversion of oxygen to ozone:
(a) decrease
(b) decrease
(c) increase
(d) decrease temperature
(e) add a catalyst
(f)Increase pressure

(a)
Interpretation:
The effect of the decrease in the concentration of O3 to the direction of equilibrium should be explained.
Concept Introduction:
The net concentrations of the reactants and products do not change at equilibrium. They are used to define an expression and the equilibrium constant (K) which has a characteristic value.
For a reaction at a given temperature,
Le Chatelier's principle is a general rule used to explain the effect of a change in reaction conditions on equilibrium.
Le Chatelier's principle states:
If a chemical system at equilibrium is disturbed, equilibrium will shift in the direction to counteract the change.
Answer to Problem 69P
Equilibrium favor shift to right.
Explanation of Solution
Given information:
The equilibrium reaction is represented as follows:
Reactants and products are in equilibrium. With decrease in the O3 concentration, equilibrium is disturbed. Then rate of the forward reaction increases.
Equilibrium favors shift to right.

(b)
Interpretation:
The effect of the decrease in the concentration of O2 to the direction of equilibrium should be explained.
Concept Introduction:
The net concentrations of the reactants and products do not change at equilibrium. They are used to define an expression and the equilibrium constant (K) which has a characteristic value.
For a reaction at a given temperature,
Le Chatelier's principle is a general rule used to explain the effect of a change in reaction conditions on equilibrium.
Le Chatelier's principle states:
If a chemical system at equilibrium is disturbed, equilibrium will shift in the direction to counteract the change.
Answer to Problem 69P
Equilibrium favors shift to left.
Explanation of Solution
Given information:
The given equilibrium reaction is as follows:
Reactants and products are in equilibrium. With decrease in the O2 concentration, equilibrium is disturbed. Then rate of the reverse reaction increases.
Equilibrium favors shift to left.

(c)
Interpretation:
The effect of the decrease in the concentration of O3 to the direction of equilibrium should be explained.
Concept Introduction:
The net concentrations of the reactants and products do not change at equilibrium. They are used to define an expression and the equilibrium constant (K) which has a characteristic value.
For a reaction at a given temperature,
Le Chatelier's principle is a general rule used to explain the effect of a change in reaction conditions on equilibrium.
Le Chatelier's principle states:
If a chemical system at equilibrium is disturbed, equilibrium will shift in the direction to counteract the change.
Answer to Problem 69P
Equilibrium favors shift to left.
Explanation of Solution
Given information:
The given equilibrium reaction is represented as follows:
Reactants and products are in equilibrium. With decrease in the O3 concentration, equilibrium is disturbed. Then rate of the reverse reaction increases.
Equilibrium favors shift to left.

(d)
Interpretation:
The effect of the decrease in temperature to the direction of equilibrium should be explained.
Concept Introduction:
The net concentrations of the reactants and products do not change at equilibrium. They are used to define an expression and the equilibrium constant (K) which has a characteristic value.
For a reaction at a given temperature,
Le Chatelier's principle is a general rule used to explain the effect of a change in reaction conditions on equilibrium.
Le Chatelier's principle states:
If a chemical system at equilibrium is disturbed, equilibrium will shift in the direction to counteract the change.
Answer to Problem 69P
Equilibrium favors shift to left.
Explanation of Solution
Given information:
The given equilibrium reaction is represented as follows:
Reactants and products are in equilibrium. This is endothermic reaction.
Endothermic reaction absorbs energy to drive the forward reaction.
With decrease in temperature, equilibrium is disturbed. Then rate of the reverse reaction increases.
Equilibrium favors shift to left.

(e)
Interpretation:
The effect of the addition of a catalyst to the direction of equilibrium should be explained.
Concept Introduction:
The net concentrations of the reactants and products do not change at equilibrium. They are used to define an expression and the equilibrium constant (K) which has a characteristic value.
For a reaction at a given temperature,
Le Chatelier's principle is a general rule used to explain the effect of a change in reaction conditions on equilibrium.
Le Chatelier's principle states:
If a chemical system at equilibrium is disturbed, equilibrium will shift in the direction to counteract the change.
Answer to Problem 69P
No change for the equilibrium.
Explanation of Solution
Given information:
Reactants and products are in equilibrium. This is endothermic reaction.
Endothermic reaction absorbs energy to drive the forward reaction.
Catalyst can increase the reaction rate by decreasing activation energy.
With the addition of a catalyst, equilibrium is not change.
Equilibrium does not change.

(f)
Interpretation:
The effect of the increase in pressure to the direction of equilibrium should be explained.
Concept Introduction:
The net concentrations of the reactants and products do not change at equilibrium. They are used to define an expression and the equilibrium constant (K) which has a characteristic value.
For a reaction at a given temperature,
Le Chatelier's principle is a general rule used to explain the effect of a change in reaction conditions on equilibrium.
Le Chatelier's principle states:
If a chemical system at equilibrium is disturbed, equilibrium will shift in the direction to counteract the change.
Answer to Problem 69P
Equilibrium favors shift to right.
Explanation of Solution
Given information:
Reactants and products are in equilibrium. Both reactant and products are gaseous molecules.
Therefore, with the increase in the pressure, the equilibrium will shift towards the side of the reaction with fewer gas molecules.
Equilibrium shift to the right side.
Want to see more full solutions like this?
Chapter 6 Solutions
GENERAL,ORGANIC, & BIOLOGICAL CHEM-ACCES
Additional Science Textbook Solutions
Physics for Scientists and Engineers
Organic Chemistry
Fundamentals of Physics Extended
Physics of Everyday Phenomena
Brock Biology of Microorganisms (15th Edition)
- This organic molecule is dissolved in a basic aqueous solution: O ? olo RET A short time later sensitive infrared spectroscopy reveals the presence of a new C-OH stretch absorption. That is, there Ar must now be a new molecule present with at least one C - OH bond. In the drawing area below, show the detailed mechanism that could convert the molecule above into the new molecule. $ Add/Remove steparrow_forwardSo the thing is im trying to memorize VESPR Shapes in order to be able to solve problems like so, and I need help with making circles like the second image that's in blue or using an x and y axis plane in order to memorize these and be able to solve those type of problems. Especially like the ones given in the top / first image. (180 , 120 , 109.5) Can you help me with this.arrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- 2. (15 points) Draw an appropriate mechanism for the following reaction. H N. H* + H₂Oarrow_forwardDraw a tripeptide of your choosing at pH 7. Have the N-terminus on the left and the C-terminus on the right. Then: Draw a triangle around the α-carbons. Draw a box around the R-groups. Circle the atoms capable of hydrogen bonding. Highlight the atoms involved in the formation of the peptide bonds. What type of structure have you drawn? (primary, secondary, tertiary or quaternary protein structure). make sure its a tripeptidearrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Don't used hand raiting and don't used Ai solutionarrow_forwardDon't used Ai solution and don't used hand raitingarrow_forward> Organic Functional Groups Naming and drawing alkyl halides structure CI Br CI CI Explanation Check 2 name 1-chloro-2,4,9-trimethylnonane CI 2-iodo-2,3-dimethylbutane FEB 19 € E M tv MacBook Airarrow_forward
- Can you please explain to me this problem im very confused and lost. Help me step by step and in detail im soo lost.arrow_forward2) There are many forms of cancer, all of which involve abnormal cell growth. The growth and production of cells, called cell proliferation, is known to involve an enzyme called protein farnesyltransferase (PFTase). It is thought that inhibitors pf PFTase may be useful as anticancer drugs. The following molecule showed moderate activity as a potential PFTase inhibitor. Draw all stereoisomers of this compound. HO OHarrow_forwardConsidering rotation around the bond highlighted in red, draw the Newman projection for the most stable and least stable conformations when viewed down the red bond in the direction of the arrow. Part 1 of 2 H₁₂C H H Draw the Newman projection for the most stable conformation. Select a template to begin. Part 2 of 2 Draw the Newman projection for the least stable conformation. G 心arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning





