
a)
Interpretation: Effect of shift in equilibrium as
Concept introduction: In accordance to Le Chatelier’s principle change in reaction condition brings changes in position of equilibrium and shifts equilibrium in that direction that tends to decrease the change. It states that on addition of reactant or product in reaction shifts the equilibrium away from the added substance. Whereas on removal of reactant or product in reaction shifts the equilibrium towards removed substance.
b)
Interpretation:Effect of shift in equilibrium as
Concept introduction: In accordance to Le Chatelier’s principle change in reaction condition brings changes in position of equilibrium and shifts equilibrium in that direction that tends to decrease the change. It states that on addition of reactant or product in reaction shifts the equilibrium away from the added substance. Whereas on removal of reactant or product in reaction shifts the equilibrium towards removed substance.
c)
Interpretation: Effect of shift in equilibrium as
Concept introduction: In accordance to Le Chatelier’s principle change in reaction condition brings changes in position of equilibrium and shifts equilibrium in that direction that tends to decrease the change. It states that on addition of reactant or product in reaction shifts the equilibrium away from the added substance. Whereas on removal of reactant or product in reaction shifts the equilibrium towards removed substance.
d)
Interpretation: Effect of equilibrium as argon gas is added in below reaction is to be determined.
Concept introduction: In accordance to Le Chatelier’s principle change in reaction condition brings changes in position of equilibrium and shifts equilibrium in that direction that tends to decrease the change.
e)
Interpretation: Effect of shift in equilibrium as volume of container is doubled in below reaction is to be determined.
Concept introduction: In accordance to Le Chatelier’s principle change in reaction condition brings changes in position of equilibrium and shifts equilibrium in that direction that tends to decrease the change. It states that with increase in pressure of container its volume decreases. Increase in volume shifts equilibrium in that direction that increases the overall volume. Decrease in volumes shifts equilibrium in that direction that has les number of moles.
f)
Interpretation: Effect of shift in equilibrium as temperature of exothermic reaction is decreased in below reaction is to be determined.
Concept introduction: In accordance to Le Chatelier’s principle change in reaction condition brings changes in position of equilibrium and shifts equilibrium in that direction that tends to decrease the change. It states that for an endothermic reaction increase in temperature tends to shift equilibrium in forward direction and for exothermic reaction it shifts in backward direction.

Want to see the full answer?
Check out a sample textbook solution
Chapter 6 Solutions
Chemical Principles
- dict the major products of this organic reaction. C Explanation Check 90 + 1.0₂ 3 2. (CH3)2S Click and drag f drawing a stru © 2025 McGraw Hill LLC. All Rights Reserved. • 22 4 5 7 8 Y W E R S F H Bilarrow_forwardcan someone draw out the reaction mechanism for this reaction showing all the curly arrows and 2. Draw the GPNA molecule and identify the phenylalanine portion. 3. Draw L-phenylalanine with the correct stereochemistryarrow_forwardWhat is the reaction mechanism for this?arrow_forward
- Predict the major products of both organic reactions. Be sure to use wedge and dash bonds to show the stereochemistry of the products when it's important, for example to distinguish between two different major products. esc esc Explanation Check 2 : + + X H₁₂O + Х ง WW E R Y qab Ccaps lock shift $ P X Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibility Bil T FR F18 9 G t K L Z X V B N M control opption command command T C darrow_forwardDraw the Markovnikov product of the hydrohalogenation of this alkene. this problem. Note for advanced students: draw only one product, and don't worry about showing any stereochemistry. Drawing dash and wedge bonds has been disabled for caps lock Explanation Check 2 W E R + X 5 HCI Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibility Bil Y F G H K L ZZ X C V B N M control opption command F10 F10 command 4 BA Ar Carrow_forwardI don't understand why the amide on the top left, with the R attached to one side, doesn't get substituted with OH to form a carboxylic acid. And if only one can be substituted, why did it choose the amide it chose rather than the other amide?arrow_forward
- esc Draw the Markovnikov product of the hydration of this alkene. Note for advanced students: draw only one product, and don't worry about showing any stereochemistry. Drawing dash and wedge bonds has been disabled for this problem. Explanation Check BBB + X 0 1. Hg (OAc)2, H₂O 2. Na BH 5 Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibility Bl P 豆 28 2 28 N 9 W E R T Y A S aps lock G H K L Z X C V B N M T central H command #e commandarrow_forwardC A student proposes the transformation below in one step of an organic synthesis. There may be one or more products missing from the right-hand side, but there are no reagents missing from the left-hand side. There may also be catalysts, small inorganic reagents, and other important reaction conditions missing from the arrow. • Is the student's transformation possible? If not, check the box under the drawing area. . If the student's transformation is possible, then complete the reaction by adding any missing products to the right-hand side, and adding required catalysts, inorganic reagents, or other important reaction conditions above and below the arrow. • You do not need to balance the reaction, but be sure every important organic reactant or product is shown. (X) This transformation can't be done in one step. + Tarrow_forwardく Predict the major products of this organic reaction. If there aren't any products, because nothing will happen, check the box under the drawing area instead. No reaction. Explanation Check OH + + ✓ 2 H₂SO 4 O xs H₂O 2 Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Centerarrow_forward
- Draw the skeletal ("line") structure of 1,3-dihydroxy-2-pentanone. Click and drag to start drawing a structure. X Parrow_forwardPredicting edict the major products of this organic reaction. If there aren't any products, because nothing will happen, check the box under the drawing area instead. + No reaction. Explanation Check HO Na O H xs H₂O 2 Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center Iarrow_forwardChoosing reagents and conditions for acetal formation or hydrolysis 0/5 A student proposes the transformation below in one step of an organic synthesis. There may be one or more products missing from the right-hand side, but there are no reagents missing from the left-hand side. There may also be catalysts, small inorganic reagents, and other important reaction conditions missing from the arrow. • Is the student's transformation possible? If not, check the box under the drawing area. If the student's transformation is possible, then complete the reaction by adding any missing products to the right-hand side, and adding required catalysts, inorganic reagents, or other important reaction conditions above and below the arrow. • You do not need to balance the reaction, but be sure every important organic reactant or product is shown. + This transformation can't be done in one step. 5 I H Autumn alo 值 Ar Barrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning





