a.
Interpretation: The equilibrium partial pressure of the gases needs to be calculated when flask contains only
Concept Introduction: The relationship between reactants and products of a reaction in equilibrium with respect to some unit is said to be equilibrium expression. It is the expression that gives ratio between products and reactants. The expression is:
When the equilibrium constant is expressed in terms of pressure, then it is represented as
a.
Answer to Problem 50E
The equilibrium partial pressure of the gases is:
Explanation of Solution
Given:
The reaction:
The expression for the equilibrium constant for the given reaction is:
Where
The ICE table for the reaction is:
Substituting the values from ICE table to equation (1) as:
Since,
Solving for x:
On solving the quadratic equation, the obtained values of x are
Hence, the equilibrium partial pressure of the gases is:
b.
Interpretation: The equilibrium partial pressure of the gases needs to be calculated when flask contains only
Concept Introduction: The relationship between reactants and products of a reaction in equilibrium with respect to some unit is said to be equilibrium expression. It is the expression that gives ratio between products and reactants. The expression is:
When the equilibrium constant is expressed in terms of pressure, then it is represented as
b.
Answer to Problem 50E
The equilibrium partial pressure of the gases is:
Explanation of Solution
When flask contains only
The expression for the equilibrium constant for the reaction is:
Where
The ICE table for the reaction is:
Substituting the values from ICE table to equation (2) as:
Since,
Solving for x:
On solving the quadratic equation, the obtained values of x are
Hence, the equilibrium partial pressure of the gases is:
c.
Interpretation: Whether the direction from which an equilibrium position is reached will matter or not should be explained from above two parts.
Concept Introduction: The relationship between reactants and products of a reaction in equilibrium with respect to some unit is said to be equilibrium expression. It is the expression that gives ratio between products and reactants. The expression is:
When the equilibrium constant is expressed in terms of pressure, then it is represented as
c.
Answer to Problem 50E
No, the direction from which an equilibrium position is reached in the
Explanation of Solution
The equilibrium partial pressure of the gas’s values obtained in above two parts; a and b are same that is:
Hence, the direction from which an equilibrium position is reached in the chemical reaction will not matter.
d.
Interpretation: The new equilibrium partial pressure needs to be calculated when the volume of the container for part a is decreased to one-half from the original volume.
Concept Introduction: The law which states the relation between pressure,
d.
Answer to Problem 50E
The new equilibrium partial pressure is:
Explanation of Solution
The Boyle’s law can be expressed as for two different sets of condition for the same substance at constant temperature as:
Where 1 and 2 indicates conditions at set 1 and condition at set 2.
Let
When the volume of the container for part a is decreased to one-half from the original volume,
So, the new equilibrium partial pressure,
The value of
So, the initial partial pressure of
The reaction:
The expression for the equilibrium constant for the given reaction is:
Where
The ICE table for the reaction is:
Substituting the values from ICE table to equation (1) as:
Since,
Solving for x:
On solving the quadratic equation, the obtained values of x are
Hence, the equilibrium partial pressure of the gases is:
Want to see more full solutions like this?
Chapter 6 Solutions
Chemical Principles
- A mixture of SO2, O2, and SO3 at 1000 K contains the gases at the following concentrations: [SO2] = 5.0 103 mol/L, [O2] = 1.9 103 mol/L, and [SO3] = 6.9 103 mol/L. Is the reaction at equilibrium? If not, which way will the reaction proceed to reach equilibrium? 2 SO2(g) + O2(g) 2 SO3(g) Kc = 279arrow_forwardThe equilibrium constant Kc, for the reaction 2 NOCI(g) 2 NO(g) + Cl2(g) is 3.9 103 at 300 C. A mixture contains the gases at the following concentrations: [NOCl] = 5.0 103 mol/L, [NO] = 2.5 103 mol/L, and [Cl2] = 2.0 103 mol/L. Is the reaction at equilibrium at 300 C? If not, in which direction does the reaction proceed to come to equilibrium?arrow_forwardKc = 5.6 1012 at 500 K for the dissociation of iodine molecules to iodine atoms. I2(g) 2 I(g) A mixture has [I2] = 0.020 mol/Land [I] = 2.0 108 mol/L. Is the reaction at equilibrium (at 500 K)? If not, which way must the reaction proceed to reach equilibrium?arrow_forward
- Calcium carbonate, CaCO3, decomposes when heated to give calcium oxide. CaO, and carbon dioxide, CO2. CaCO3(s)CaO(s)+CO2(g) Kp for this reaction at 900C is 1.040 What would be the yield of carbon dioxide (in grams) when 1.000 g of CaCO3 and 1.000 g CaO are heated to 900C in a 1.000-L vessel. (Ignore the volume occupied by the solids.) What would be the effect of adding a similar quantity of carbon dioxide to this equilibrium mixture? What would happen if the quantity of calcium carbonate were doubled?arrow_forwardA solution is prepared by dissolving 0.050 mol of diiodocyclohexane, C5H10I2, in the solvent CCl4.The total solution volume is 1.00 L When the reaction C6H10I2 C6H10 + I2 has come to equilibrium at 35 C, the concentration of I2 is 0.035 mol/L. (a) What are the concentrations of C6H10I2 and C6H10 at equilibrium? (b) Calculate Kc, the equilibrium constant.arrow_forwardConsider the following equilibrium: COBr2(g) CO(g) + Br2(g)Kc = 0.190 at 73 C (a) A 0.50 mol sample of COBr2 is transferred to a 9.50-L flask and heated until equilibrium is attained. Calculate the equilibrium concentrations of each species. (b) The volume of the container is decreased to 4.5 L and the system allowed to return to equilibrium. Calculate the new equilibrium concentrations. (Hint: The calculation will be easier if you view this as a new problem with 0.5 mol of COBr2 transferred to a 4.5-L flask.) (c) What is the effect of decreasing the container volume from 9.50 L to 4.50 L?arrow_forward
- Kc for the decomposition of ammonium hydrogen sulfide is 1.8 104 at 25 C. NH4HS(s) NH3(g) + H2S(g) (a) When the pure salt decomposes in a flask, what are the equilibrium concentrations of NH3 and H2S? (b) If NH4HS is placed in a flask already containing 0.020 mol/L of NH3 and then the system is allowed to come to equilibrium, what are the equilibrium concentrations of NH3 and H2S?arrow_forward12.103 Methanol, CH3OH, can be produced by the reaction of CO with H2, with the liberation of heat. All species in the reaction are gaseous. What effect will each of the following have on the equilibrium concentration of CO? (a) Pressure is increased, (b) volume of the reaction container is decreased, (c) heat is added, (d) the concentration of CO is increased, (e) some methanol is removed from the container, and (f) H2 is added.arrow_forwardAt room temperature, the equilibrium constant Kc for the reaction 2 NO(g) ⇌ N2(g) + O2(g) is 1.4 × 1030. Is this reaction product-favored or reactant-favored? Explain your answer. In the atmosphere at room temperature the concentration of N2 is 0.33 mol/L, and the concentration of O2 is about 25% of that value. Calculate the equilibrium concentration of NO in the atmosphere produced by the reaction of N2 and O2. How does this affect your answer to Question 11?arrow_forward
- For the equilibrium 2 SO2(g) + O2(g) 2 SO3(g) Kc = 245 (at 1000 K) the equilibrium concentrations are [SO2] = 0.102, [O2] = 0.0132, and [SO3] = 0.184. The concentration of SO2 is suddenly doubled. Show that the forward reaction takes place to reach a new equilibrium.arrow_forwardPhosphorus pentachloride, PCl5, decomposes on heating to give phosphorus trichloride, PCl5, and chlorine. PCl5(g)PCl3(g)+Cl2(g) A closed 2.90-L vessel initially contains 0.0564 mol PCl5. What is the total pressure at 250C when equilibrium is achieved? The value of Kc at 250C is 4.15 102.arrow_forwardFor the reaction N2(g)+3H2(g)2NH3(g) show that Kc = Kp(RT)2 Do not use the formula Kp = Kc(RT)5n given in the text. Start from the fact that Pi = [i]RT, where Pi is the partial pressure of substance i and [i] is its molar concentration. Substitute into Kc.arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning