Chemical Principles
Chemical Principles
8th Edition
ISBN: 9781305581982
Author: Steven S. Zumdahl, Donald J. DeCoste
Publisher: Cengage Learning
bartleby

Videos

Question
Book Icon
Chapter 6, Problem 62E

a)

Interpretation Introduction

Interpretation: Effect of reaction mixture at equilibrium as H2O(g) is removed from below reaction is to be determined.

  CH4(g)+H2O(g)750 °CNi catCO(g)+3H2(g)

Concept introduction: In accordance to Le Chatelier’s principle, change in reaction condition brings changes in position of equilibrium and shifts equilibrium in that direction that tends to decrease the change. It states that on addition of reactant or product in a reaction, shifts the equilibrium in the direction of decreasing the added amount. Whereas on removal of reactant or product in reaction, shifts the equilibrium in the direction of increasing the amount removed.

b)

Interpretation Introduction

Interpretation: Effect of reaction mixture at equilibrium as temperature of endothermic reaction is increased in below reaction is to be determined.

  CH4(g)+H2O(g)750 °CNi catCO(g)+3H2(g)

Concept introduction: In accordance to Le Chatelier’s principle change in reaction condition brings changes in position of equilibrium and shifts equilibrium in that direction that tends to decrease the change. It states that for an endothermic reaction increase in temperature tends to shift equilibrium in forward direction and for exothermic reaction it shifts in backward direction.

c)

Interpretation Introduction

Interpretation: Effect of reaction mixture at equilibrium as pressure inert gas is added in below reaction is to be determined.

  CH4(g)+H2O(g)750 °CNi catCO(g)+3H2(g)

Concept introduction: In accordance to Le Chatelier’s principle change in reaction condition brings changes in position of equilibrium and shifts equilibrium in that direction that tends to decrease the change. It states that with increase in pressure of container its volume decreases. Increase in volume shifts equilibrium in that direction that increases the overall volume. Decrease in volumes shifts equilibrium in that direction that has less number of moles.

d)

Interpretation Introduction

Effect of reaction mixture at equilibrium as CO(g) is removed from below reaction is to be determined.

  CH4(g)+H2O(g)750 °CNi catCO(g)+3H2(g)

Concept introduction: In accordance to Le Chatelier’s principle, change in reaction condition brings changes in position of equilibrium and shifts equilibrium in that direction that tends to decrease the change. It states that on addition of reactant or product in a reaction, shifts the equilibrium in the direction of decreasing the added amount. Whereas on removal of reactant or product in reaction, shifts the equilibrium in the direction of increasing the amount removed.

e)

Interpretation Introduction

Interpretation: Effect of reaction mixture at equilibrium as volume is tripled in below reaction is to be determined.

  CH4(g)+H2O(g)750 °CNi catCO(g)+3H2(g)

Concept introduction: In accordance to Le Chatelier’s principle change in reaction condition brings changes in position of equilibrium and shifts equilibrium in that direction that tends to decrease the change. It states that with increase in pressure of container its volume decreases. Increase in volume shifts equilibrium in that direction that increases the overall volume. Decrease in volumes shifts equilibrium in that direction that has less number of moles.

Blurred answer
Students have asked these similar questions
Correct each molecule in the drawing area below so that it has the skeletal ("line") structure it would have if it were dissolved in a 0.1 M aqueous solution of HCI. If there are no changes to be made, check the No changes box under the drawing area. No changes. HO Explanation Check NH, 2 W O :□ G ©2025 M unter Accessibility
An expression for the root mean square velocity, vrms, of a gas was derived. Using Maxwell’s velocity distribution, one can also calculate the mean velocity and the most probable velocity (mp) of a collection of molecules. The equations used for these two quantities are vmean=(8RT/πM)1/2 and vmp=(2RT/M)1/2 These values ​​have a fixed relationship to each other.(a) Arrange these three quantities in order of increasing magnitude.(b) Show that the relative magnitudes are independent of the molar mass of the gas.(c) Use the smallest velocity as a reference for establishing the order of magnitude and determine the relationship between the larger and smaller values.
The reaction of solid dimethylhydrazine, (CH3)2N2H2, and liquefied dinitrogen tetroxide, N2O4, has been investigated for use as rocket fuel. The reaction produces the gases carbon dioxide (CO2), nitrogen (N2), and water vapor (H2O), which are ejected in the exhaust gases. In a controlled experiment, solid dimethylhydrazine was reacted with excess dinitrogen tetroxide, and the gases were collected in a closed balloon until a pressure of 2.50 atm and a temperature of 400.0 K were reached.(a) What are the partial pressures of CO2, N2, and H2O?(b) When the CO2 is removed by chemical reaction, what are the partial pressures of the remaining gases?

Chapter 6 Solutions

Chemical Principles

Ch. 6 - Consider the following reactions at some...Ch. 6 - Prob. 12ECh. 6 - Consider the same reaction as in Exercise 12. In a...Ch. 6 - Consider the following reaction at some...Ch. 6 - Prob. 15ECh. 6 - Prob. 16ECh. 6 - Prob. 17ECh. 6 - Prob. 18ECh. 6 - Explain the difference between K, Kp , and Q.Ch. 6 - Prob. 20ECh. 6 - Prob. 21ECh. 6 - For which reactions in Exercise 21 is Kp equal to...Ch. 6 - Prob. 23ECh. 6 - Prob. 24ECh. 6 - At 327°C, the equilibrium concentrations are...Ch. 6 - Prob. 26ECh. 6 - At a particular temperature, a 2.00-L flask at...Ch. 6 - Prob. 28ECh. 6 - Prob. 29ECh. 6 - Prob. 30ECh. 6 - Prob. 31ECh. 6 - Nitrogen gas (N2) reacts with hydrogen gas (H2) to...Ch. 6 - A sample of gaseous PCl5 was introduced into an...Ch. 6 - Prob. 34ECh. 6 - Prob. 35ECh. 6 - At a particular temperature, 8.0 moles of NO2 is...Ch. 6 - Prob. 37ECh. 6 - Prob. 38ECh. 6 - Prob. 39ECh. 6 - Prob. 40ECh. 6 - At a particular temperature, K=1.00102 for...Ch. 6 - Prob. 42ECh. 6 - Prob. 43ECh. 6 - For the reaction below at a certain temperature,...Ch. 6 - At 1100 K, Kp=0.25 for the following reaction:...Ch. 6 - At 2200°C, K=0.050 for the reaction...Ch. 6 - Prob. 47ECh. 6 - Prob. 48ECh. 6 - Prob. 49ECh. 6 - Prob. 50ECh. 6 - Prob. 51ECh. 6 - Prob. 52ECh. 6 - Prob. 53ECh. 6 - Prob. 54ECh. 6 - Which of the following statements is(are) true?...Ch. 6 - Prob. 56ECh. 6 - Prob. 57ECh. 6 - Prob. 58ECh. 6 - Chromium(VI) forms two different oxyanions, the...Ch. 6 - Solid NH4HS decomposes by the following...Ch. 6 - An important reaction in the commercial production...Ch. 6 - Prob. 62ECh. 6 - Prob. 63ECh. 6 - Prob. 64ECh. 6 - Prob. 65ECh. 6 - Prob. 66ECh. 6 - Prob. 67ECh. 6 - Prob. 68ECh. 6 - Prob. 69AECh. 6 - Prob. 70AECh. 6 - Prob. 71AECh. 6 - Prob. 72AECh. 6 - Prob. 73AECh. 6 - Prob. 74AECh. 6 - An initial mixture of nitrogen gas and hydrogen...Ch. 6 - Prob. 76AECh. 6 - Prob. 77AECh. 6 - Prob. 78AECh. 6 - Prob. 79AECh. 6 - Prob. 80AECh. 6 - Prob. 81AECh. 6 - For the reaction PCl5(g)PCl3(g)+Cl2(g) at 600. K,...Ch. 6 - Prob. 83AECh. 6 - The gas arsine (AsH3) decomposes as follows:...Ch. 6 - Prob. 85AECh. 6 - Prob. 86AECh. 6 - Consider the decomposition of the compound C5H6O3...Ch. 6 - Prob. 88AECh. 6 - Prob. 89AECh. 6 - Prob. 90AECh. 6 - Prob. 91AECh. 6 - Prob. 92AECh. 6 - Prob. 93AECh. 6 - Prob. 94AECh. 6 - Prob. 95AECh. 6 - Prob. 96CPCh. 6 - Nitric oxide and bromine at initial partial...Ch. 6 - Prob. 98CPCh. 6 - Prob. 99CPCh. 6 - Consider the reaction 3O2(g)2O3(g) At 175°C and a...Ch. 6 - A mixture of N2,H2andNH3 is at equilibrium...Ch. 6 - Prob. 103CPCh. 6 - Prob. 104CPCh. 6 - Prob. 105CPCh. 6 - A 1.604-g sample of methane (CH4) gas and 6.400 g...Ch. 6 - At 1000 K the N2(g)andO2(g) in air (78% N2, 21% O2...Ch. 6 - Prob. 108CPCh. 6 - Prob. 109CPCh. 6 - Prob. 110CPCh. 6 - Prob. 111CPCh. 6 - A sample of gaseous nitrosyl bromide (NOBr)...Ch. 6 - A gaseous material XY(g) dissociates to some...
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Text book image
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781133611097
Author:Steven S. Zumdahl
Publisher:Cengage Learning
Chemical Equilibria and Reaction Quotients; Author: Professor Dave Explains;https://www.youtube.com/watch?v=1GiZzCzmO5Q;License: Standard YouTube License, CC-BY