Interpretation:
The temperature of steam in its final state along with the change in entropy should be deduced based on steam table data as well as based on the ideal gas assumption.
Concept Introduction:
- For a two-phase liquid-vapor equilibrium mixture the specific volume (V), enthalpy (H) and entropy (S) are given as:
- For a process that takes place at constant enthalpy, the change in enthalpy is zero. In other words, the enthalpy in the final state (H2) is equal to that in the initial state (H1). The change in enthalpy is given as:
Based on steam tables:
The final temperature of steam, T =
The entropy change, ?S =
Based on the ideal gas assumption:
The final temperature of steam, T =
The entropy change, ?S = -
Given:
Initial pressure of steam, P1 = 2100 kPa
Initial Temperature of steam =
Final pressure P2 = 125 kPa
Explanation:
Since this is a constant enthalpy process, H1 = H2
The initial state enthalpy (H1) and entropy (S1) can be deduced by interpolation based on the steam table data for superheated steam at 2100 kPa.
The final state temperature and entropy (S2) can be deduced from steam tables from the calculated initial enthalpy data.
Calculations:
Step 1:
Calculate the initial state enthalpy (H1) and entropy (S1) at T =
Based on the steam tables at the initial state pressure = 2100 kPa we have:
For superheated steam:
At Saturation temperature, T =
Specific enthalpy of vapor, Hg = 2897.9 kJ/kg
Specific entropy of vapor, Sg = 6.5162 kJ/kg-K
At Saturation temperature, T =
Specific enthalpy of vapor, Hg = 2961.9 kJ/kg
Specific entropy of vapor, Sg = 6.6356 kJ/kg-K
Thus the enthalpy and entropy at initial state T =
Step 2:
Calculate the final temperature and ?S
Since, H2 = H1
We have, H2 = 2923.5 kJ/kgBased on the steam tables the above specific enthalpy corresponds to superheated steam at a pressure P = 125 kPa and T =
Thus, the final state temperature, T2 =
Specific entropy of vapor at this final temperature, S2 = 7.8324 kJ/kg-K
Step 3:
Calculate the final temperature and ?S based on the ideal gas assumption
Enthalpy is a state function and dependent on temperature. Since the process takes place at constant enthalpy, there is will be no change in temperature.
T2 = T1 =
The entropy change for an ideal gas is:
Thus,
Based on steam tables:
The final temperature of steam, T =
The entropy change, ?S =
Based on the ideal gas assumption:
The final temperature of steam, T =
The entropy change, ?S = -
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
Introduction to Chemical Engineering Thermodynamics
- (30) 6. In a process design, the following process streams must be cooled or heated: Stream No mCp Temperature In Temperature Out °C °C kW/°C 1 5 350 270 2 9 270 120 3 3 100 320 4 5 120 288 Use the MUMNE algorithm for heat exchanger networks with a minimum approach temperature of 20°C. (5) a. Determine the temperature interval diagram. (3) (2) (10) (10) b. Determine the cascade diagram, the pinch temperatures, and the minimum hot and cold utilities. c. Determine the minimum number of heat exchangers above and below the pinch. d. Determine a valid heat exchange network above the pinch. e. Determine a valid heat exchange network below the pinch.arrow_forwardUse this equation to solve it.arrow_forwardQ1: Consider the following transfer function G(s) 5e-s 15s +1 1. What is the study state gain 2. What is the time constant 3. What is the value of the output at the end if the input is a unit step 4. What is the output value if the input is an impulse function with amplitude equals to 3, at t=7 5. When the output will be 3.5 if the input is a unit steparrow_forward
- give me solution math not explinarrow_forwardExample (6): An evaporator is concentrating F kg/h at 311K of a 20wt% solution of NaOH to 50wt %. The saturated steam used for heating is at 399.3K. The pressure in the vapor space of the evaporator is 13.3 KPa abs. The 5:48 O Transcribed Image Text: Example (7): Determine thearrow_forward14.9. A forward feed double-effect vertical evaporator, with equal heating areas in each effect, is fed with 5 kg/s of a liquor of specific heat capacity of 4.18 kJ/kg K. and with no boiling point rise, so that 50 per cent of the feed liquor is evaporated. The overall heat transfer coefficient in the second effect is 75 per cent of that in the first effect. Steam is fed at 395 K and the boiling point in the second effect is 373 K. The feed is heated by an external heater to the boiling point in the first effect. It is decided to bleed off 0.25 kg/s of vapour from the vapour line to the second effect for use in another process. If the feed is still heated to the boiling point of the first effect by external means, what will be the change in steam consumption of the evaporator unit? For the purpose of calculation, the latent heat of the vapours and of the steam may both be taken as 2230 kJ/kgarrow_forward
- Example(3): It is desired to design a double effect evaporator for concentrating a certain caustic soda solution from 12.5wt% to 40wt%. The feed at 50°C enters the first evaporator at a rate of 2500kg/h. Steam at atmospheric pressure is being used for the said purpose. The second effect is operated under 600mmHg vacuum. If the overall heat transfer coefficients of the two stages are 1952 and 1220kcal/ m2.h.°C. respectively, determine the heat transfer area of each effect. The BPR will be considered and present for the both effect 5:49arrow_forwardالعنوان ose only Q Example (7): Determine the heating surface area 개 required for the production of 2.5kg/s of 50wt% NaOH solution from 15 wt% NaOH feed solution which entering at 100 oC to a single effect evaporator. The steam is available as saturated at 451.5K and the boiling point rise (boiling point evaluation) of 50wt% solution is 35K. the overall heat transfer coefficient is 2000 w/m²K. The pressure in the vapor space of the evaporator at atmospheric pressure. The solution has a specific heat of 4.18kJ/ kg.K. The enthalpy of vaporization under these condition is 2257kJ/kg Example (6): 5:48 An evaporator is concentrating F kg/h at 311K of a 20wt% solution of NaOH to 50wt %. The saturated steam used for heating is at 399.3K. The pressure in the vapor space of the evaporator is 13.3 KPa abs. The 5:48 1 J ۲/۱ ostrarrow_forwardExample 8: 900 Kg dry solid per hour is dried in a counter current continues dryer from 0.4 to 0.04 Kg H20/Kg wet solid moisture content. The wet solid enters the dryer at 25 °C and leaves at 55 °C. Fresh air at 25 °C and 0.01Kg vapor/Kg dry air is mixed with a part of the moist air leaving the dryer and heated to a temperature of 130 °C in a finned air heater and enters the dryer with 0.025 Kg/Kg alry air. Air leaving the dryer at 85 °C and have a humidity 0.055 Kg vaper/Kg dry air. At equilibrium the wet solid weight is 908 Kg solid per hour. *=0.0088 Calculate:- Heat loss from the dryer and the rate of fresh air. Take the specific heat of the solid and moisture are 980 and 4.18J/Kg.K respectively, A. =2500 KJ/Kg. Humid heat at 0.01 Kg vap/Kg dry=1.0238 KJ/Kg. "C. Humid heat at 0.055 Kg/Kg 1.1084 KJ/Kg. "C 5:42 Oarrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The