Introduction to Chemical Engineering Thermodynamics
Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN: 9781259696527
Author: J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher: McGraw-Hill Education
Question
Book Icon
Chapter 6, Problem 6.46P

(a)

Interpretation Introduction

Interpretation:

Calculate values of Gl and Gv for saturated liquid and vapor at 150psia . Comment whether these two have same value or not.

Concept Introduction:

The Gibbs free energy is calculated as:

  G=HTS

(a)

Expert Solution
Check Mark

Answer to Problem 6.46P

  Gl=89.9btulbm

  Gv=89.9btulbm

Explanation of Solution

Given information:

It is given that pressure is P=150psia and steam is saturated.

From steam tables of saturated steam in Appendix E, table E.1

At pressure P=150psia

  P=150psia×6.89476kPa1psia=1034.214kPa

Since, pressure P=1034.214kPa lies in between pressures 1049.6kPa and 1002.7kPa with temperatures 455.15K and 453.15K, with enthalpies of saturated vapor are Hvap=2778.0Jgm and Hvap=2776.3Jgm, enthalpies of saturated liquid Hliq=772.0Jgm and Hliq=763.1Jgm, with entropies of saturated vapor are Svap=6.5660JgmK and Svap=6.5819JgmK, entropies of saturated liquid are Sliq=2.1587JgmK and Sliq=2.1393JgmK .

From linear interpolation, if M is the function of a single independent variable X then the value of M at X is intermediate between two given values, M1 at X1 and M2 at X2

Temperature corresponding to P=150psia

  M=( X 2X X 2 X 1)M1+(X X 1 X 2 X 1)M2T=(1049.6kPa1034.214kPa1049.6kPa1002.7kPa)×453.15K+(1034.214kPa1002.7kPa1049.6kPa1002.7kPa)×455.15KT=454.49K

Enthalpy of saturated liquid and entropy of saturated liquid and vapor is

  M=( X 2X X 2 X 1)M1+(X X 1 X 2 X 1)M2Hvap=(1049.6kPa1034.214kPa1049.6kPa1002.7kPa)×2776.3Jgm+(1034.214kPa1002.7kPa1049.6kPa1002.7kPa)×2778.0JgmHvap=2777.44Jgm

And,

  M=( X 2X X 2 X 1)M1+(X X 1 X 2 X 1)M2Hliq=(1049.6kPa1034.214kPa1049.6kPa1002.7kPa)×763.1Jgm+(1034.214kPa1002.7kPa1049.6kPa1002.7kPa)×772JgmHliq=769.08Jgm

Entropy of saturated liquid and entropy of saturated liquid and vapor is

  M=( X 2X X 2 X 1)M1+(X X 1 X 2 X 1)M2Sliq=(1049.6kPa1034.214kPa1049.6kPa1002.7kPa)×2.1393JgmK+(1034.214kPa1002.7kPa1049.6kPa1002.7kPa)×2.1587JgmKSliq=2.1523JgmK

And,

  M=( X 2X X 2 X 1)M1+(X X 1 X 2 X 1)M2SVap=(1049.6kPa1034.214kPa1049.6kPa1002.7kPa)×6.5819JgmK+(1034.214kPa1002.7kPa1049.6kPa1002.7kPa)×6.5660JgmKSVap=6.571JgmK

So,

  Gl=HlTSlGl=769.08Jgm454.49K×2.1523JgmKGl=209.12Jgm=89.9btulbm

And

  Gvap=HvapTSvapGv=2777.44Jgm454.49K×6.571JgmKGv=209.01Jgm=89.9btulbm

Both values of Gl and Gv for saturated liquid and vapor at P=150psia are same.

(b)

Interpretation Introduction

Interpretation:

Calculate values for ΔHlvT and ΔSlv at P=150psia . Comment whether these two have same value or not.

Concept Introduction:

The change in enthalpy and entropy in ideal gas is defined as:

  ΔHlv=HvHl

And

  ΔSlv=SvSl

(b)

Expert Solution
Check Mark

Answer to Problem 6.46P

  ΔHlvT=1.055btulbmR

  ΔSlv=1.055btulbmR

Explanation of Solution

From subpart (a), values of enthalpies of saturated vapor and liquid as well as values of entropies of saturated vapor and liquid are:

Hl=769.08Jgm, Sl=2.1523JgmK, Hvap=2777.44Jgm and Svap=6.571JgmK

And temperature is:

  T=454.49K

So,

  ΔHlvT=HvHlTΔHlvT=2777.44Jgm769.08Jgm454.49KΔHlvT=4.419JgmK=1.055btulbmR

And

  ΔSlv=SvSlΔSlv=6.571JgmK2.1523JgmKΔSlv=4.4187JgmK=1.055btulbmR

Both values of ΔHlvT and ΔSlv for saturated liquid and vapor at P=150psia are same.

(c)

Interpretation Introduction

Interpretation:

Calculate values for VR, HR and SR for saturated vapor at P=150psia and compare the values with suitable generalized correlation.

Concept Introduction:

The residual properties VR is calculated as:

  VR=VVig=VRTP

The residual properties HR is calculated as:

  HR=HHig

The residual properties SR is calculated as:

  SR=SSig

(c)

Expert Solution
Check Mark

Answer to Problem 6.46P

  VR=0.23ft3lbm

  HR=27.39btulbm

  SR=0.025btulbmR

Explanation of Solution

At P=150psia, for saturated vapor

H=2777.44Jgm and S=6.571JgmK, T=454.49K

Vat 1002.7kPa=193.8cm3gm, Vat 1049.6=185.5cm3gm

So,

  M=( X 2X X 2 X 1)M1+(X X 1 X 2 X 1)M2V=(1002.7kPa1034.214kPa1002.7kPa957.36kPa)×193.8cm3gm+(1034.214kPa957.36kPa1002.7kPa957.36kPa)×185.5cm3gmV=188.22cm3gm

Now, for the hypothetical ideal gas values of volume, enthalpy and entropy at same temperature and pressure, it cannot find using steam table because steam tables only give values of real gases not ideal gases. However, we can make an approximation of low pressure in real gases at the same temperature to convert real gas into ideal one. So, we are considering low pressure or 1kPaand 454.49K . Now from steam tables of superheated steam in Appendix E, table E.2, at 1kPaand 454.49K

Since,

1kPaand 454.49K lies in between temperatures 448.15K and 473.15K, with volumes 206810cm3gm and 218350cm3gm, enthalpies 2831.7Jgm and 2880.1Jgm, entropies 9.8629JgmK and 9.9679JgmK .

Hence from linear interpolation, at 1kPaand 454.49K

  M=( X 2X X 2 X 1)M1+(X X 1 X 2 X 1)M2Vig=(473.15K453.03K473.15K448.15K)×206810cm3gm+(453.03K448.15K473.15K448.15K)×218350cm3gmVig=209062cm3gm

  M=( X 2X X 2 X 1)M1+(X X 1 X 2 X 1)M2Hig=(473.15K453.03K473.15K448.15K)×2831.7Jgm+(453.03K448.15K473.15K448.15K)×2880.1JgmHig=2841.15Jgm

  M=( X 2X X 2 X 1)M1+(X X 1 X 2 X 1)M2Sig=(473.15K453.03K473.15K448.15K)×9.8629JgmK+(453.03K448.15K473.15K448.15K)×9.9679JgmKSig=9.883JgmK

But we want values of volume, enthalpy and entropy of ideal gas at 1034.214kPaand 454.49K, not 1kPaand 454.49K .Since temperature is not changing ( 454.49K ) and hence it is constant so, it is isothermal process and hence

  P1V1=P2V2 is applicable

  1034.214kPa×V1=1×209062cm3gmVig=202.146cm3gm

And

Enthalpy of ideal gas is defined as

  ΔH=RT0TCPigRdT

Which is not the function of pressure, so enthalpy of ideal gas at 1034.214kPaand 454.49K is same as enthalpy of ideal gas at 1kPaand 454.49K and hence,

  Hig=2841.15Jgm

Now,

For entropy we know that

  dSig=CPigdTTRdPP

Since temperature s constant so first term at right hand side will be zero and hence,

  dSig=RdPPΔSig=RP1P2dPP=RlnP2P1ΔSig=8.314Jmol K×1mol18gm×ln1034.2141ΔSig=3.206JgmKS2igS1ig=3.206JgmK

  S2ig=S1ig3.206JgmK

  S2ig=9.883JgmK3.206JgmK=6.677JgmK

So,

Residual properties are:

  VR=VVig

  VR=188.22cm3gm202.146cm3gmVR=13.926cm3gm×0.016 ft 3 lb m1 cm 3gm=0.23ft3lbm

And

  HR=HHigHR=2777.44Jgm2841.15JgmHR=63.71Jgm=27.39btulbm

And

  SR=SSigSR=6.571JgmK6.677JgmKSR=0.106JgmK=0.025btulbmR

Now calculations of residual properties of volume, enthalpy and entropy for saturated vapor from generalized correlations are given below,

VR=RTP(Z1)

                      ....(1a)

Where, Z=1+B0PrTr+ωB1PrTr

                      ....(1b)

HRRTC=HRB(Tr,Pr,ω)

                      ....(2a)

Where, HRB(Tr,Pr,ω)=HRRTC=Pr[B0TrdB0dTr+ω(B1TrdB1dTr)]

                      ....(2b)

And S2RR=SRB(Tr,Pr,ω)

                      ....(3a)

Where SRB(Tr,Pr,ω)=SRR=Pr[dB0dTr+ωdB1dTr]

                      ....(3b)

Properties of pure species of steam are given in Table B.1 Appendix B as water,

  ω=0.345,TC=647.1K,PC=220.55bar

  Tr=TTcTr=454.49K647.1K=0.7,

  Pr=PPcPr=1034.214kPa×1bar100kPa220.55bar=0.0469

So,

  B0=0.0830.422Tr1.6B0=0.0830.4220.71.6B0=0.664

And

  B1=0.1390.172Tr4.2B1=0.1390.1720.74.2B1=0.63

For differentiative terms in equation (2b) and (3b),

  B0=0.0830.422Tr1.6dB0dTr=1.6×0.422Tr2.6=1.6×0.4220.72.6=1.707

And,

  B1=0.1390.172Tr4.2dB1dTr=4.2×0.172Tr5.2=4.2×0.1720.75.2=4.616

For residual volume calculations, From equation (1b)

  Z=1+B0PrTr+ωB1PrTrZ=1+(0.664)×0.04690.7+0.345×(0.63)×0.04690.7Z=0.941

So, from equation (1a)

  VR=RTP(Z1)VR=8.314kPa lmol K×454.49K1034.214kPa×1000cm31l×1mol18gm(0.9411)VR=11.976cm3gm×0.016 ft 3 lb m1 cm 3gm=0.192ft3lbm

For residual enthalpy calculations, From equation (2b)

  HRB(Tr,Pr,ω)=HRRTC=Pr×[B0TrdB0dTr+ω(B1Tr d B 1 d T r )]HRRTC=0.0469×[0.6640.7×1.707+0.345×(0.630.7×4.616)]HRB(Tr,Pr,ω)=HRRTC=0.1497

So, from equation (2a)

  HRRTC=HRB(Tr,Pr,ω)HR=RTC×HRB(Tr,Pr,ω)HR=8.314Jmol K×647.1K×1mol18gm×0.1497HR=44.74Jgm=19.23btulbm

For residual entropy calculations, from equation (3b)

  SRB(Tr,Pr,ω)=SRR=Pr[dB0dTr+ωdB1dTr]SRR=0.0469×[1.707+0.345×(4.616)]SRB(Tr,Pr,ω)=SRTC=0.1547

So, from equation (3a)

  SRR=SRB(Tr,Pr,ω)SR=R×SRB(Tr,Pr,ω)SR=8.314Jmol K×1mol18gm×0.1547SR=0.0714JgmK=0.0170btulbmR

Results do not agree but approximately they do agree.

(d)

Interpretation Introduction

Interpretation:

Calculate values for dPsatdT at P=150psia and apply the Clapeyron equation to evaluate ΔSlv at P=150psia . Comment whether results follow steam table values or not.

Concept Introduction:

First draw a graph between lnP and 1T, find its slope then calculate the dPsatdT from slope.

The Clapeyron equation is:

  dPsatdT=ΔHlvTΔVlv

(d)

Expert Solution
Check Mark

Answer to Problem 6.46P

  ΔSlv=0.976btulbmR

Explanation of Solution

From saturated steam table in Appendix E, table E.2

  Psat(kPa)T(K)957.36451.151000453.031049.6455.15

Now, draw a graph between lnP and 1T

Introduction to Chemical Engineering Thermodynamics, Chapter 6, Problem 6.46P

Slope of the graph from equation of graph is 4.3627

Or,

  slope=dlnPsatd(1/T)=4.3627×1103=1Psat×T21×dPsatdT

So,

  dPsatdT=slope×PsatT2dPsatdT=4362.7×-1034.214kPa454.492KdPsatdT=21.84

Also,

Volume of saturated liquid and entropy of saturated liquid and vapor at pressure P=1034.214kPa from steam tables of saturated steam in Appendix E, table E.1

Since, pressure P=1034.214kPa lies in between pressures 1049.6kPa and 1002.7kPa with volume of saturated vapor are Vvap=185.5cm3gm and Vvap=193.8cm3gm, and volume of saturated liquid are Vliq=1.130cm3gm and Vliq=1.128cm3gm, Hence from linear interpolation

  M=( X 2X X 2 X 1)M1+(X X 1 X 2 X 1)M2Vvap=(1002.7kPa1034.214kPa1002.7kPa957.36kPa)×193.8cm3gm+(1034.214kPa957.36kPa1002.7kPa957.36kPa)×185.5cm3gmVvap=188.22cm3gm

And,

  M=( X 2X X 2 X 1)M1+(X X 1 X 2 X 1)M2Vliq=(1002.7kPa1000kPa1002.7kPa957.36kPa)×1.128cm3gm+(1000kPa957.36kPa1002.7kPa957.36kPa)×1.130cm3gmVliq=1.129cm3gm

So,

  ΔVlv=VvapVliqΔVlv=188.22cm3gm1.129cm3gmΔVlv=187.091cm3gm

Now from Clapeyron equation,

  dPsatdT=ΔHlvTΔVlvSince, ΔSlv=ΔHlvTdPsatdT=ΔSlvΔVlvΔSlv=ΔVlvdPsatdTΔSlv=187.091cm3gm×21.84kPaK×1m31003cm3×1000Pa1kPaΔSlv=4.086JgmK=0.976btulbmR

The value of ΔSlv at 1034.214kPa from steam table is, take reference of subpart (b) for the value of ΔSlv is,

  ΔSlv=1.055btulbmR

So, the results approximately match with each other.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
At a Pressure of 200 mm Hg, match the substance with the boiling temperature. 69.50°C 1. Benzene 1.92°C 2. Toluene 41.94°C 3. n-Pentane 4. n-Hexane 31.61°C
At a Pressure of 400 mm Hg, match the substance with the boiling temperature. 62.89°C 1. Styrene 122.69°C 2. Ethanol 3. Toluene 89.48°C 4. Benzene 60.61°C
8. A gas is admitted at a rate of 0.015 m³s-¹ to a vertical glass pipe with an inside diameter of 50 mm. The gas bubbles that form travel with a velocity of 32 ms-¹. Determine the gas void fraction and the velocity of the liquid if the volumetric flow is 2.5 x 10-5 m³s-1. Answer: 0.24, 1.7 ms-1 9 Characterise the main concepts of a homogeneous flow model sepa-

Chapter 6 Solutions

Introduction to Chemical Engineering Thermodynamics

Ch. 6 - Prob. 6.11PCh. 6 - Prob. 6.12PCh. 6 - Prob. 6.13PCh. 6 - Prob. 6.14PCh. 6 - Prob. 6.15PCh. 6 - Prob. 6.16PCh. 6 - Prob. 6.17PCh. 6 - Prob. 6.18PCh. 6 - Prob. 6.19PCh. 6 - Prob. 6.20PCh. 6 - Prob. 6.21PCh. 6 - Prob. 6.22PCh. 6 - Prob. 6.23PCh. 6 - Prob. 6.24PCh. 6 - Prob. 6.25PCh. 6 - Prob. 6.26PCh. 6 - Prob. 6.27PCh. 6 - What is the mole fraction of water vapor in air...Ch. 6 - Prob. 6.29PCh. 6 - Prob. 6.30PCh. 6 - Prob. 6.31PCh. 6 - Prob. 6.32PCh. 6 - Prob. 6.33PCh. 6 - Prob. 6.34PCh. 6 - Prob. 6.35PCh. 6 - Prob. 6.36PCh. 6 - Prob. 6.37PCh. 6 - Prob. 6.38PCh. 6 - Prob. 6.39PCh. 6 - Prob. 6.40PCh. 6 - Prob. 6.41PCh. 6 - Prob. 6.42PCh. 6 - Prob. 6.43PCh. 6 - Prob. 6.44PCh. 6 - Prob. 6.45PCh. 6 - Prob. 6.46PCh. 6 - Prob. 6.47PCh. 6 - Prob. 6.48PCh. 6 - Prob. 6.49PCh. 6 - Prob. 6.50PCh. 6 - Prob. 6.51PCh. 6 - Prob. 6.52PCh. 6 - Prob. 6.53PCh. 6 - Prob. 6.54PCh. 6 - Prob. 6.55PCh. 6 - Prob. 6.56PCh. 6 - Prob. 6.57PCh. 6 - Prob. 6.58PCh. 6 - Prob. 6.59PCh. 6 - Prob. 6.60PCh. 6 - Prob. 6.61PCh. 6 - Prob. 6.62PCh. 6 - Prob. 6.63PCh. 6 - Prob. 6.64PCh. 6 - Prob. 6.65PCh. 6 - Prob. 6.66PCh. 6 - Prob. 6.67PCh. 6 - Prob. 6.68PCh. 6 - Prob. 6.69PCh. 6 - Prob. 6.71PCh. 6 - Prob. 6.72PCh. 6 - Prob. 6.73PCh. 6 - Prob. 6.74PCh. 6 - Prob. 6.75PCh. 6 - Prob. 6.76PCh. 6 - Prob. 6.77PCh. 6 - Prob. 6.78PCh. 6 - Prob. 6.79PCh. 6 - Prob. 6.80PCh. 6 - Prob. 6.81PCh. 6 - The temperature dependence of the second virial...Ch. 6 - Prob. 6.83PCh. 6 - Prob. 6.84PCh. 6 - Prob. 6.85PCh. 6 - Prob. 6.86PCh. 6 - Prob. 6.87PCh. 6 - Prob. 6.88PCh. 6 - Prob. 6.89PCh. 6 - Prob. 6.90PCh. 6 - Prob. 6.91PCh. 6 - Prob. 6.92PCh. 6 - Prob. 6.93PCh. 6 - Prob. 6.94PCh. 6 - Prob. 6.95PCh. 6 - Prob. 6.96PCh. 6 - Prob. 6.97PCh. 6 - Prob. 6.98PCh. 6 - Prob. 6.99PCh. 6 - Prob. 6.100P
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The