Introduction to Chemical Engineering Thermodynamics
Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN: 9781259696527
Author: J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher: McGraw-Hill Education
Question
Book Icon
Chapter 6, Problem 6.50P
Interpretation Introduction

Interpretation:

Determine the molar volume, enthalpy and entropyfor1,3-butadiene as a saturated vapor and as a saturated liquid at 380K .

Concept Introduction:

From Lee and Kesler generalized correlations, the molar volume of the propane in the final state, enthalpy and entropy changes are calculated as:

  V=ZRTP

Where, Z=Z0+ωZ1....(1)

And enthalpy and entropy changes are calculated as:

  H=ΔH=T1T2CPigdT+H2RH1R

Where, HR=(HR)0+ω(HR)1....(2)

And

  S=ΔS=T1T2CPigdTTRlnP2P1+S2RS1R

Where, SR=(SR)0+ω(SR)1....(3)

Expert Solution & Answer
Check Mark

Answer to Problem 6.50P

The molar volume is

Vvap=872.38cm3mol, Vliq=109.95cm3mol

And

Hvap=1680.026Jmol

, Hliq=12308.09Jmol

Svap=14.056Jmol K, Sliq=50.87Jmol K

Explanation of Solution

Given information:

It is given that enthalpy and entropy are set equal to zero for the ideal gas state at 101.33kPa and 273.15K .

The vapor pressure of 1,3-butadiene at 380K is 1919.4kPa

For pure species 1,3-butadiene, the properties can be written down using Appendix B, Table B.1

ω=0.19, Tc=425.2K, Pc=42.77bar, ZC=0.267, Tn=268.7K, VC=220.4cm3mol

The molar volume for1,3-butadiene saturated vapor is calculated directly from equation,

  V=ZRTP

For Z=Z0+ωZ1

  Tr=T2TcTr=380K425.2K=0.894

Since vapor pressure is given as 1919.4kPa and is final state pressure.

So,

  Pr=PPcPr=1919.4kPa×1bar100kPa42.77bar=0.449

So, at above values of Tr and Pr, The values of Z0 and Z1 can be written from Appendix D

Tr=0.894 lies between reduced temperatures Tr=0.85 and Tr=0.90 and Pr=0.449 lies in between reduced pressures Pr=0.4 and Pr=0.6 .

At Tr=0.85 and Pr=0.4

Z0=0.0661, ( H R)RTC0=4.309, ( S R)R0=4.785

At Tr=0.85 and Pr=0.6

Z0=0.0983, ( H R)RTC0=4.313, ( S R)R0=4.418

At Tr=0.90 and Pr=0.4

Z0=0.78, ( H R)RTC0=0.596, ( S R)R0=0.463

At Tr=0.90 and Pr=0.6

Z0=0.1006, ( H R)RTC0=4.074, ( S R)R0=4.145

And

At Tr=0.85 and Pr=0.4

Z1=0.0268, ( H R)RTC1=4.753, ( S R)R1=4.853

At Tr=0.85 and Pr=0.6

Z1=0.0391, ( H R)RTC1=4.754, ( S R)R1=4.841

At Tr=0.90 and Pr=0.4

Z1=0.1118, ( H R)RTC1=0.751, ( S R)R1=0.744

At Tr=0.90 and Pr=0.6

Z1=0.0396, ( H R)RTC1=4.254, ( S R)R1=4.269

Applying linear interpolation of two independent variables, From linear double interpolation, if M is the function of two independent variable X and Y then the value of quantity M at two independent variables X and Y adjacent to the given values are represented as follows:

  X1XX2Y1M1,1M1,2YM=?Y2M2,1M2,2

So,

  M=[( X 2 X X 2 X 1 )M1,1+( X X 1 X 2 X 1 )M1,2]Y2YY2Y1+[( X 2 X X 2 X 1 )M2,1+( X X 1 X 2 X 1 )M2,2]YY1Y2Y1Z0=[( 0.60.449 0.60.4)×0.0661+( 0.4490.4 0.60.4)×0.0983]×0.90.8940.90.85+[( 0.60.449 0.60.4)×0.78+( 0.4490.4 0.60.4)×0.1006]×0.894-0.850.90.85Z0=0.549

  M=[( X 2 X X 2 X 1 )M1,1+( X X 1 X 2 X 1 )M1,2]Y2YY2Y1+[( X 2 X X 2 X 1 )M2,1+( X X 1 X 2 X 1 )M2,2]YY1Y2Y1( H R )RTC0=[( 0.60.449 0.60.4)×4.309+( 0.4490.4 0.60.4)×4.313]×0.90.8940.90.85+[( 0.60.449 0.60.4)×0.596+( 0.4490.4 0.60.4)×4.074]×0.894-0.850.90.85( H R )RTC0=1.791

  M=[( X 2 X X 2 X 1 )M1,1+( X X 1 X 2 X 1 )M1,2]Y2YY2Y1+[( X 2 X X 2 X 1 )M2,1+( X X 1 X 2 X 1 )M2,2]YY1Y2Y1( S R )R0=[( 0.60.449 0.60.4)×4.785+( 0.4490.4 0.60.4)×4.418]×0.90.8940.90.85+[( 0.60.449 0.60.4)×0.463+( 0.4490.4 0.60.4)×4.145]×0.894-0.850.90.85( S R )R0=1.823

And

  M=[( X 2 X X 2 X 1 )M1,1+( X X 1 X 2 X 1 )M1,2]Y2YY2Y1+[( X 2 X X 2 X 1 )M2,1+( X X 1 X 2 X 1 )M2,2]YY1Y2Y1Z1=[( 0.60.449 0.60.4)×0.0268+( 0.4490.4 0.60.4)×0.0391]×0.90.8940.90.85+[( 0.60.449 0.60.4)×0.1118+( 0.4490.4 0.60.4)×0.0396]×0.894-0.850.90.85Z1=0.086

  M=[( X 2 X X 2 X 1 )M1,1+( X X 1 X 2 X 1 )M1,2]Y2YY2Y1+[( X 2 X X 2 X 1 )M2,1+( X X 1 X 2 X 1 )M2,2]YY1Y2Y1( H R )RTC1=[( 0.60.449 0.60.4)×4.753+( 0.4490.4 0.60.4)×4.754]×0.90.8940.90.85+[( 0.60.449 0.60.4)×0.751+( 0.4490.4 0.60.4)×4.254]×0.894-0.850.90.85( H R )RTC1=1.987

  M=[( X 2 X X 2 X 1 )M1,1+( X X 1 X 2 X 1 )M1,2]Y2YY2Y1+[( X 2 X X 2 X 1 )M2,1+( X X 1 X 2 X 1 )M2,2]YY1Y2Y1( S R )R1=[( 0.60.449 0.60.4)×4.853+( 0.4490.4 0.60.4)×4.841]×0.90.8940.90.85+[( 0.60.449 0.60.4)×0.744+( 0.4490.4 0.60.4)×4.269]×0.894-0.850.90.85( S R )R1=1.997

Now from equation (1) at final state

  Z=Z0+ωZ1Z=0.549+0.19×0.086Z=0.53

And

  V=ZRTPV=0.53×8.314l kPamol K×1000 cm 31l×380K1919.4kPaVvap=872.38cm3mol

From equation (2) at final state,

  HR=(HR)0+ω(HR)1

  ( H R )RTC0=1.791(HR)0=1.791×8.314Jmol K×425.2K(HR)0=6331.39Jmol

And

  ( H R )RTC1=1.987(HR)1=1.987×8.314Jmol K×425.2K(HR)1=7024.27Jmol

So,

  HR=(HR)0+ω(HR)1HR=6331.39Jmol+0.19×7024.27JmolHR=7666.0013Jmol

  ΔH=T1T2CPigdT+H2RH1R

At final state H1R=0

  ΔH=T1T2CPigdT+H2R

  T0TΔCPRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)

Where τ=TT0

  τ=TT0=380273.15=1.391

Values of above constants for 1,3-Butadiene in above equation are given in appendix C table C.1 and noted down below:

  iA103B106C105D1,3butadiene2.73426.7868.8820

  T0TΔ C PRdT=AT0(τ1)+B2T02(τ21)+C3T03(τ31)+DT0(τ1τ)T0TΔCPRdT=2.734×273.15×(1.3911)+26.786×1032273.152(1.39121)+8.882×1063×273.153(1.39131)+0×105273.15(1.39111.391)T0TΔCPRdT=1124.13K

  ΔH=RT1T2 C P igRdT+H2RΔH=8.314JKmol×1124.13K7666.0013JmolΔH=1680.026Jmol=Hvap

  ( S R )R0=1.823(SR)0=1.823×8.314Jmol K(SR)0=15.16Jmol K

And

  ( S R )R1=1.997(SR)1=8.314Jmol K×1.997(SR)1=16.6Jmol K

So,

  SR=(SR)0+ω(SR)1SR=15.16Jmol K+0.19×16.6Jmol KSR=18.31Jmol K

  ΔS=T1T2CPigdTTRlnP2P1+S2RS1R

At final state S1R=0

  ΔS=RT1T2CPigRdTTRlnP2P1+S2R

  T1T2CPigRdTT=[A+{BT0+(CT02+Dτ2T02)(τ+12)}(τ1lnτ)]×lnτ

  τ=TT0=380273.15=1.391

Values of above constants for 1,3-Butadiene in above equation are given in appendix C table C.1 and noted down below:

  iA103B106C105D1,3butadiene2.73426.7868.8820

  T1T2 C P igRdTT=[A+{BT0+(CT02+D τ 2 T 0 2 )( τ+12)}(τ1lnτ)]×lnτT1T2CP igRdTT=[2.734+{26.786×103×273.15+(8.882×106×273.152+0× 10 5 1.391 2× 273.15 2)(1.391+12)}(1.3911ln1.391)]×ln1.391T1T2CPigRdTT=3.453

Hence,

  ΔS=RT1T2 C P igRdTTRln P 2 P 1+S2RΔS=8.314Jmol K×3.4538.314Jmol K×ln1919.4kPa101.33kPa+(18.31Jmol K)ΔS=Svap=14.056Jmol K

Now, for saturated liquid

Molar volume of saturated liquid can be found out using following correlation proposed by Rackett

  Vsat=VCZC(1 T r)0.2857Vsat=220.4cm3mol×0.267(10.894)0.2857Vliq=109.95cm3mol

Now, for enthalpy and entropy of saturated liquid

  ΔHnRTn=1.092(ln P C1.013)0.93 T n T cΔHnRTn=1.092(ln42.771.013)0.93268.7K425.2KΔHnRTn=10.05ΔHn=10.05×8.314Jmol K×268.7KΔHn=22448.8Jmol

  ΔH2ΔH1=( 1 T r2 1 T r1 )0.38ΔH222448.8Jmol=( 10.894 1 268.7K 425.2K )0.38ΔH2=13988.12Jmol

  ΔH2=HvapHliqHliq=HvapΔH2Hliq=1680.026Jmol13988.12JmolHliq=12308.09Jmol

  ΔH2T=SvapSliqSliq=SvapΔH2TSliq=14.056Jmol K13988.12Jmol380KSliq=50.87Jmol K

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
4. Show that the fraction, F, of the energy released from a supercritical chain reaction that originates in the final m generations of the chain is given approximately by F= 1 km provided the total number of generations is large.
PLEASE SOLVE STEP BY STEP WITHOUT ARTIFICIAL INTELLIGENCE OR CHATGPT I don't understand why you use chatgpt, if I wanted to I would do it myself, I need to learn from you, not from being a d amn robot. SOLVE BY HAND STEP BY STEP    A solution containing 7.5% sulfuric acid by weight at 70 °F is concentrated to 45% by weight by evaporating water. The concentrated solution and the water vapor exit the evaporator at 170 °F and 1 atm. Calculate the rate at which heat must be transferred to the evaporator to process 1500 lbm/hr of the feed solution to the evaporator. It is recommended to use the enthalpy-concentration diagram for sulfuric acid from Chapter 8 of Felder's book or an enthalpy-concentration diagram for sulfuric acid found in another unit operations book or chemical engineering manual such as Perry's.
PLEASE SOLVE STEP BY STEP WITHOUT ARTIFICIAL INTELLIGENCE OR CHATGPT I don't understand why you use chatgpt, if I wanted to I would do it myself, I need to learn from you, not from being a d amn robot. SOLVE BY HAND STEP BY STEP   Suppose that the system designed in problem 33 of the Thermodynamics II problem set from UAM-Azcapotzalco is relocated to another area near the sea, specifically, Ciudad del Carmen, Campeche. Recalculate the compressor-cooler system for the new environmental conditions. Make the considerations you deem logical in redesigning your system. Indicate the references or sources where you obtained your data.

Chapter 6 Solutions

Introduction to Chemical Engineering Thermodynamics

Ch. 6 - Prob. 6.11PCh. 6 - Prob. 6.12PCh. 6 - Prob. 6.13PCh. 6 - Prob. 6.14PCh. 6 - Prob. 6.15PCh. 6 - Prob. 6.16PCh. 6 - Prob. 6.17PCh. 6 - Prob. 6.18PCh. 6 - Prob. 6.19PCh. 6 - Prob. 6.20PCh. 6 - Prob. 6.21PCh. 6 - Prob. 6.22PCh. 6 - Prob. 6.23PCh. 6 - Prob. 6.24PCh. 6 - Prob. 6.25PCh. 6 - Prob. 6.26PCh. 6 - Prob. 6.27PCh. 6 - What is the mole fraction of water vapor in air...Ch. 6 - Prob. 6.29PCh. 6 - Prob. 6.30PCh. 6 - Prob. 6.31PCh. 6 - Prob. 6.32PCh. 6 - Prob. 6.33PCh. 6 - Prob. 6.34PCh. 6 - Prob. 6.35PCh. 6 - Prob. 6.36PCh. 6 - Prob. 6.37PCh. 6 - Prob. 6.38PCh. 6 - Prob. 6.39PCh. 6 - Prob. 6.40PCh. 6 - Prob. 6.41PCh. 6 - Prob. 6.42PCh. 6 - Prob. 6.43PCh. 6 - Prob. 6.44PCh. 6 - Prob. 6.45PCh. 6 - Prob. 6.46PCh. 6 - Prob. 6.47PCh. 6 - Prob. 6.48PCh. 6 - Prob. 6.49PCh. 6 - Prob. 6.50PCh. 6 - Prob. 6.51PCh. 6 - Prob. 6.52PCh. 6 - Prob. 6.53PCh. 6 - Prob. 6.54PCh. 6 - Prob. 6.55PCh. 6 - Prob. 6.56PCh. 6 - Prob. 6.57PCh. 6 - Prob. 6.58PCh. 6 - Prob. 6.59PCh. 6 - Prob. 6.60PCh. 6 - Prob. 6.61PCh. 6 - Prob. 6.62PCh. 6 - Prob. 6.63PCh. 6 - Prob. 6.64PCh. 6 - Prob. 6.65PCh. 6 - Prob. 6.66PCh. 6 - Prob. 6.67PCh. 6 - Prob. 6.68PCh. 6 - Prob. 6.69PCh. 6 - Prob. 6.71PCh. 6 - Prob. 6.72PCh. 6 - Prob. 6.73PCh. 6 - Prob. 6.74PCh. 6 - Prob. 6.75PCh. 6 - Prob. 6.76PCh. 6 - Prob. 6.77PCh. 6 - Prob. 6.78PCh. 6 - Prob. 6.79PCh. 6 - Prob. 6.80PCh. 6 - Prob. 6.81PCh. 6 - The temperature dependence of the second virial...Ch. 6 - Prob. 6.83PCh. 6 - Prob. 6.84PCh. 6 - Prob. 6.85PCh. 6 - Prob. 6.86PCh. 6 - Prob. 6.87PCh. 6 - Prob. 6.88PCh. 6 - Prob. 6.89PCh. 6 - Prob. 6.90PCh. 6 - Prob. 6.91PCh. 6 - Prob. 6.92PCh. 6 - Prob. 6.93PCh. 6 - Prob. 6.94PCh. 6 - Prob. 6.95PCh. 6 - Prob. 6.96PCh. 6 - Prob. 6.97PCh. 6 - Prob. 6.98PCh. 6 - Prob. 6.99PCh. 6 - Prob. 6.100P
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The