Introduction To Health Physics
5th Edition
ISBN: 9780071835275
Author: Johnson, Thomas E. (thomas Edward), Cember, Herman.
Publisher: Mcgraw-hill Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6, Problem 6.23P
To determine
The dose from the gamma and from the neutrons at 1500 m from ground zero.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A particular radioactive source produces 100 mrad of 2-MeV gamma rays per hour at a distance of 1.0 m. (a) How long could a person stand at this distance before accumulating an intolerable dose of 1 rem? (b) Assuming the gamma radiation is emitted uniformly in all directions, at what distance would a person recieve a dose of 10 mrad/h from this source?
dont provode hand written solution
In an industrial accident a 65 kg person receives a lethal whole-body equivalent dose of 5.4 Sv from x rays.
(a) What is the equivalent dose in rem?
(b) What is the absorbed dose in rad?
(c) What is the total energy absorbed by the person’s body? How does this amount of energy compare to the amount of energy required to raise the temperature of 65 kg of water 0.010 C°?
A person is to work in a mixed field consisting of 5mGy/h of gamma radiation, 1.0 mGy/h of beta radiation, 0.5 mGy/h of fast neutrons and 0.8 mGy/h of slow neutrons. How long can he work for without exceeding a whole-body dose limit recommended by ICRP? (The quality factors for fast and slow neutrons are 10 and 5 respectively.)
Chapter 6 Solutions
Introduction To Health Physics
Ch. 6 - A 50-µC/kg (approximately 200 mR) pocket dosimeter...Ch. 6 - Prob. 6.2PCh. 6 - Prob. 6.3PCh. 6 - Prob. 6.4PCh. 6 - Prob. 6.5PCh. 6 - Prob. 6.6PCh. 6 - Prob. 6.7PCh. 6 - Prob. 6.8PCh. 6 - Prob. 6.9PCh. 6 - Prob. 6.10P
Ch. 6 - Prob. 6.11PCh. 6 - Prob. 6.12PCh. 6 - Prob. 6.13PCh. 6 - Prob. 6.14PCh. 6 - Prob. 6.15PCh. 6 - Prob. 6.16PCh. 6 - Prob. 6.17PCh. 6 - Prob. 6.19PCh. 6 - Prob. 6.20PCh. 6 - Calculate the average power density, in watts per...Ch. 6 - Prob. 6.22PCh. 6 - Prob. 6.23PCh. 6 - Prob. 6.24PCh. 6 - Prob. 6.26PCh. 6 - Prob. 6.27PCh. 6 - Prob. 6.28PCh. 6 - Prob. 6.29PCh. 6 - Prob. 6.33P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the dose in mSv for: (a) a 0.1 Gy xray? (b) 2.5 mGy of neutron exposure to the eye? (c) 1.5 mGy of exposure?arrow_forwardFind the radiation dose in Gy for: (a) A 10-mSv fluoroscopic X-ray series, (b) 50 mSv of skin exposure by an a emitter, (c) 160 mSv of and rays from the 40K in your body.arrow_forwardWhat is the dose in mSv for: (a) a 0.1-Gy X-ray? (b) 2.5 mGy of neutron exposure to the eye? (c) 1.5m Gy of a exposure?arrow_forward
- A beam of 168MeV nitrogen nuclei is used for cancer therapy. If this beam is directed onto a 0.200kg tumor and gives it a 2.00Sv dose, how many nitrogen nuclei were stopped? (Use an RBE of 20 for heavy ions.)arrow_forwardAssume onefourth of the yield of a typical 320kT strategic bomb comes from fission reactions averaging 200 MeV and the remainder from fusion reactions averaging 20 MeV. (a) Calculate the number of fissions and the approximate mass of uranium and plutonium fissioned, taking the average atomic mass to be 238. (b) Find the number of fusions and calculate the approximate mass of fusion fuel, assuming an average total atomic mass of the two nuclei in each reaction to be 5. (c) Considering the masses found, does it seem reasonable that some missiles could carry 10 warheads? Discuss, noting that the nuclear fuel is only a part of the mass of a warhead.arrow_forward(a) Calculate the energy released in the neutroninduced fission (similar to the spontaneous fission in Example 32.3) n+238U96Sr+140Xe+3n, given m(96Sr)=95.921750u and m(140Xe)=139.92164. (b) This result is about 6 MeV greater than the result for spontaneous fission. Why? (c) Con?rm that the total number at nucleons and total charge are conserved in this reaction.arrow_forward
- (a) Calculate the energy released in the neutroninduced fission reaction n+239Pu96Sr+140Ba+4n, given m(96Sr)=95.921750u and m(140Ba)=139.910581u. (b) Confirm that the total number of nucleons and total charge are conserved in this reaction.arrow_forward(a) Calculate the energy released in the neutron- induced fission n+238U96Sr+140Xe+3n , given m(96Sr)=95.921750uand m(140Xe)=139.92164 . This result is about 6 MeV greater than the result for spontaneous fission. Why? Confirm that the total number of nucleons and total charge are conserved in this reaction.arrow_forwardWhat time interval elapses while 90.0% of the radioactivity of a sample of 3372As disappears as measured by its activity? The half-life of 3372As is 26 h.arrow_forward
- Strontium-90 from the testing of nuclear bombs can still be found in the atmosphere. Each decay of 90Sr releases 1.10 MeV of energy into the bones of a person who has had strontium replace his or her body’s calcium. Assume a 70.0-kg person receives 1.00 ng of 90Sr from contaminated milk. Take the half-life of 90Sr to be 29.1 yr. Calculate the absorbed dose rate (in joules per kilogram) in one year.arrow_forwardAn average adult body contains about 0.10 µCi of 1K, which comes from food. (a) How many decays occur per second? (b) The potassium decays produce beta particles with energies of around 1.4 MeV. Calculate the dose per year in sieverts for a 50-kg adult. Is this a significant frac- tion of the 3.6 mSv/year background rate?arrow_forwardAn aluminum foil of thickness 0.30 mm is bombarded by energetic neutrons. The aluminum nuclei undergo neutron capture according to the process 2Al(n,y)28 Al, with a measured capture cross section of 2.0×1031 m². Assuming the flux of incident neutrons to be 5.0×10¹2 neutrons/ cm²-s, calculate the number of neutrons captured per second by 1.0 cm² of the foil. The density of aluminum is 2.7 g/cm³.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning