Introduction To Health Physics
5th Edition
ISBN: 9780071835275
Author: Johnson, Thomas E. (thomas Edward), Cember, Herman.
Publisher: Mcgraw-hill Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6, Problem 6.15P
To determine
To determine the dose
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A beam of 5.0 MeV alpha particles (q-2e) has a cross-sectional area of 1.50 cm2. It is incident on flesh (p-950
kg/m³) and penetrates to a depth of 0.70 mm. a) What dose in Gy does the beam provide to the flesh in a time of
3.0 s? b) What effective dose does it provide? Assume the beam to carry a current of 2.50 x 109 A and to have QF
- 14.
✓
ON
"O
2.75 MeV
0.511 MeV
0.511 MeV
B, E= 1.73 MeV
Eave = 0.721 Mev
O MeV
The maximum permissible workday dose
for occupational exposure to radiation is
26 mrem. A 55-kg laboratory technician
absorbs 3.3 mJ of 0.40-MeV gamma rays
in a workday. The relative biological
efficiency (RBE) for gamma rays is 1.00.
What is the ratio of the equivalent dosage
received by the technician to the
maximum permissible equivalent dosage?
O 0.23
0.28
O 0.30
0.25
Chapter 6 Solutions
Introduction To Health Physics
Ch. 6 - A 50-µC/kg (approximately 200 mR) pocket dosimeter...Ch. 6 - Prob. 6.2PCh. 6 - Prob. 6.3PCh. 6 - Prob. 6.4PCh. 6 - Prob. 6.5PCh. 6 - Prob. 6.6PCh. 6 - Prob. 6.7PCh. 6 - Prob. 6.8PCh. 6 - Prob. 6.9PCh. 6 - Prob. 6.10P
Ch. 6 - Prob. 6.11PCh. 6 - Prob. 6.12PCh. 6 - Prob. 6.13PCh. 6 - Prob. 6.14PCh. 6 - Prob. 6.15PCh. 6 - Prob. 6.16PCh. 6 - Prob. 6.17PCh. 6 - Prob. 6.19PCh. 6 - Prob. 6.20PCh. 6 - Calculate the average power density, in watts per...Ch. 6 - Prob. 6.22PCh. 6 - Prob. 6.23PCh. 6 - Prob. 6.24PCh. 6 - Prob. 6.26PCh. 6 - Prob. 6.27PCh. 6 - Prob. 6.28PCh. 6 - Prob. 6.29PCh. 6 - Prob. 6.33P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the dose in mSv for: (a) a 0.1 Gy xray? (b) 2.5 mGy of neutron exposure to the eye? (c) 1.5 mGy of exposure?arrow_forwardThe dosage of technetium-99m for a lung scan is 20. µCi /kg of body mass. How many millicuries of technetium-99m should be given to a 49 kg person (1 mCi = 1000uCi)? Suppose a person absorbed 46 mrad of alpha radiation.What would be the equivalent dose in millirems?arrow_forwardPlease provide Handwritten answer. Two 13.3 mg radium tubes are arranged in a line with their centers 5.5 cm apart. A weaker source is placed midway between them. How much radium should be in this latter source to produce the same dose rates to points opposite each of the sources at a distance of 2.0 cm away from the line. Assume sources 1.35 cm active length 1.0 mm Pt.arrow_forward
- The linear attenuation coefficient for 2.0-MeV gamma rays in water is 4.9 m-1 and 52 m-1 in lead. What thickness of water would give the same shielding for gamma rays as 15 mm of lead?arrow_forwardA worker will need to conduct a repair to a pipe containing radioactive waste. The pipe is 10 m long, and the worker will need to be standing 50 cm from the pipe. A remote detector was used to take a reading of 1.5 R/hr at 3 m from the pipe. a) What is the dose rate at the work position? b) If the worker's dose limit is 30 rad, how long will he have to complete the work? Assume that there is no dose from approaching and leaving the work location.arrow_forwardThe RDA for the trace element selenium is 0.000070 g>day. Express this dose in mg>day.arrow_forward
- 4arrow_forwardA radioactive contaminant gives an unfortunate 0.5 kg lab rat a dose of 1500 rem in just 1 minute. Assuming that the half life of the radioactive isotope in the contaminant is much longer than1 minute, what would the activity (in Bq) of the contaminant be if the contaminant is a 1.1MeV beta emitter?arrow_forwardA particular radioactive source produces 100 mrad of 2-MeV gamma rays per hour at a distance of 1.0 m. (a) How long could a person stand at this distance before accumulating an intolerable dose of 1 rem? (b) Assuming the gamma radiation is emitted uniformly in all directions, at what distance would a person recieve a dose of 10 mrad/h from this source? dont provode hand written solutionarrow_forward
- A 53.0 kgkg laboratory worker is exposed to 26.0 mJmJ of beta radiation with RBE = 1.5. What is the dose equivalent in mremmrem?arrow_forwardQ7arrow_forwardThe (effective) dose to a patient can be measured in milli-Serverts (mSv) or expressed as the time taken to receive the equivalent dose from background radiation. A certain radiograph gives a 1.232 mSv dose which is equivalent to a background radiation dose of 32 weeks.a)How many days in 32 weeks? Give your answer as a whole number. b)Using the information for the radiograph in this question, calculate the UK daily background dose (in mSv/day). Give your answer to 5 decimal places and use it to this accuracy, if needed in subsequent calculations. c)Another radiograph has a 0.0054 mSv dose. Work out the equivalent background dose (in days) for this radiograph. Give your answer to 2 decimal places and use it to this accuracy in any subsequent calculations. d)How many hours is the number of days in part c) equivalent to? Give your answer to 2 decimal places.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning