Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470501979
Author: Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine
Publisher: Wiley, John & Sons, Incorporated
bartleby

Videos

Textbook Question
Book Icon
Chapter 6, Problem 6.12P

Air at a free stream temperature of T = 20 ° C is in parallel flow over a flat plate of length L = 5 m and temperature T s = 90 ° C . However, obstacles placed in the flow intensify mixing with increasing distance x from the leading edge, and the spatial variation of temperatures measured in the boundary layer is correlated by an expression of the form T ( ° C ) = 20 + 70 exp ( 600 x y ) , where x and y are in meters. Determine and plot the manner in which the local convection coefficient h varies with x. Evaluate the average convection coefficient h ¯ for the plate.

Blurred answer
Students have asked these similar questions
A one-third scale model of an airplane is to be tested in water. The airplane has a velocity of 900 km/h in air at −50°C. The water temperature in the test section is 10°C.                                                                                                 The properties of air at 1 atm and −50°C: ? = 1.582 kg/m3, ? = 1.474 × 10−5 kg/m·s.                                                                                The properties of water at 1 atm and 10°C: ? = 999.7 kg/m3, ? = 1.307 × 10−3 kg/m·s.                                                                                                  In order to achieve similarity between the model and the prototype, the water velocity on the model should be (a) 97 km/h (b) 186 km/h (c) 263 km/h (d ) 379 km/h (e) 450 km/h
The actual car will be running at V= 35 km/h at p-1 atm and T=0°C (the air density and viscosity are 1.292 kg/m3, and 1.338 x 105 m2/s, respectively). A one-fifth scale car model is being tested at the wind tunnel at 198.3 km/h at 1 atm and 20°C. (The air density and viscosity are 1.204 kg/m³, and 1.516 x 10$ m²/s, respectively). The average drag force on the model is 50 N. What is the drag force on the prototype? Note that dimensionless drag is Cp 1/2pV² A O 41.8 N O 50 N O 15.0 N O 44.2 N O 8.4 N O 38.9 N
between two concentric spherical sheets there is air. The inner spherical sheet has a radius of 10 cm and is filled with ice at 0 ° C, the outer spherical sheet has a radius of 10.05 cm and is at a temperature of 15 ° C. What amount of heat will be transmitted from one sheet to another by conductivity ends in 1/4 hour ?. Considering that the air is pressurized, it is considered to be 15 N / m ^ 2 and at a temperature of 2 ° C. The diameter of the air molecules is taken equal to 3 x 10 ^ -10 m. the molar mass of air is taken equal to 29 g / mol; Boltzman's constant k = 1.38 x 10 ^ -23 J / K

Chapter 6 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 6 - A concentrating solar collector consists of a...Ch. 6 - Air at a free stream temperature of T=20C is in...Ch. 6 - The heat transfer rate per unit width (normal to...Ch. 6 - Experiments to determine the local convection heat...Ch. 6 - An experimental procedure for validating results...Ch. 6 - If laminar flow is induced at the surface of a...Ch. 6 - Consider the rotating disk of Problem 6.16. A...Ch. 6 - Consider airflow over a flat plate of length L=1m...Ch. 6 - A fan that can provide air speeds up to 50 m/s is...Ch. 6 - Consider the flow conditions of Example 6.4 for...Ch. 6 - Assuming a transition Reynolds number of 5105,...Ch. 6 - To a good approximation, the dynamic viscosity the...Ch. 6 - Prob. 6.23PCh. 6 - Consider a laminar boundary layer developing over...Ch. 6 - Consider a laminar boundary layer developing over...Ch. 6 - Experiments have shown that the transition from...Ch. 6 - An object of irregular shape has a characteristic...Ch. 6 - Experiments have shown that, for airflow at T=35C...Ch. 6 - Experimental measurements of the convection heat...Ch. 6 - To assess the efficacy of different liquids for...Ch. 6 - Gases are often used instead of liquids to cool...Ch. 6 - Experimental results for heat transfer over a flat...Ch. 6 - Consider conditions for which a fluid with a free...Ch. 6 - Consider the nanofluid of Example 2.2. Calculate...Ch. 6 - For flow over a flat plate of length L, the local...Ch. 6 - For laminar boundary layer flow over a flat plate...Ch. 6 - Sketch the variation of the velocity and thermal...Ch. 6 - Consider parallel flow over a flat plate for air...Ch. 6 - Forced air at T=25C and V=10m/s is used to cool...Ch. 6 - Consider the electronic elements that are cooled...Ch. 6 - Consider the chip on the circuit board of Problem...Ch. 6 - A major contributor to product defects in...Ch. 6 - A microscale detector monitors a steady flow...Ch. 6 - A thin, flat plate that is 0.2m0.2m on a side is...Ch. 6 - Atmospheric air is in parallel flow...Ch. 6 - Determine the drag force imparted to the top...Ch. 6 - For flow over a flat plate with an extremely rough...Ch. 6 - A thin, flat plate that is 0.2m0.2m on a side with...Ch. 6 - As a means of preventing ice formation on the...Ch. 6 - A circuit board with a dense distribution of...Ch. 6 - On a summer day the air temperature is 27C and the...Ch. 6 - It is observed that a 230-mm-diameter pan of water...Ch. 6 - The rate at which water is lost because of...Ch. 6 - Photosynthesis, as it occurs in the leaves of a...Ch. 6 - Species A is evaporating from a flat surface into...Ch. 6 - Prob. 6.57PCh. 6 - Prob. 6.58PCh. 6 - An object of irregular shape has a characteristic...Ch. 6 - Prob. 6.60PCh. 6 - An object of irregular shape 1 m long maintained...Ch. 6 - Prob. 6.62PCh. 6 - Prob. 6.63PCh. 6 - Prob. 6.64PCh. 6 - Prob. 6.65PCh. 6 - A streamlined strut supporting a bearing housing...Ch. 6 - Prob. 6.67PCh. 6 - Consider the conditions of Problem 6.7, for which...Ch. 6 - Using the naphthalene sublimation technique. the...Ch. 6 - Prob. 6.70PCh. 6 - Prob. 6.71PCh. 6 - Prob. 6.72PCh. 6 - Dry air at 32C flows over a wetted (water) plate...Ch. 6 - Dry air at 32C flows over a wetted plate of length...Ch. 6 - Prob. 6.75PCh. 6 - Prob. 6.76PCh. 6 - Prob. 6.77PCh. 6 - An expression for the actual water vapor partial...Ch. 6 - A mist cooler is used to provide relief for a...Ch. 6 - A wet-bulb thermometer consists of a...Ch. 6 - Prob. 6.81PCh. 6 - Prob. 6.83PCh. 6 - An experiment is conducted to determine the...Ch. 6 - Prob. 6.85PCh. 6 - Consider the control volume shown for the special...Ch. 6 - Prob. 6S.2PCh. 6 - Prob. 6S.3PCh. 6 - Consider two large (infinite) parallel plates, 5...Ch. 6 - Prob. 6S.5PCh. 6 - Consider Couette flow for which the moving plate...Ch. 6 - A shaft with a diameter of 100 mm rotates at 9000...Ch. 6 - Consider the problem of steady, incompressible...Ch. 6 - Prob. 6S.11PCh. 6 - A simple scheme for desalination involves...Ch. 6 - Consider the conservation equations (6S.24) and...

Additional Engineering Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License