Materials Science and Engineering Properties, SI Edition
Materials Science and Engineering Properties, SI Edition
1st Edition
ISBN: 9781305178175
Author: GILMORE, Charles
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 6, Problem 6.11P
To determine

The total tensile proportional limit stress.

Expert Solution & Answer
Check Mark

Answer to Problem 6.11P

The tensile proportional limit stress is 49MPa .

Explanation of Solution

Given:

The critical shear stress of niobium is 20×106Pa .

The temperature is 295K .

Formula Used:

Write the expression for the angle between normal to [011] slip plane and [001] crystal direction.

  ϕ=cos1[u1u2+v1v2+w1w2(u12+v12+w12)(u22+v22+w22)] …… (I)

Here, ϕ is the angle between the normal to the slip plane and direction of the crystal orientation, u1 is the x -component of vector 1, v1 is y -component of vector 1 and w1 is the z -component of vector 1, u2 is the x -component of vector 2, v2 is y -component of vector 2 and w2 is the z -component of vector 2.

Write the expression for the angle between [111] slip direction and [001] crystal direction.

  λ=cos1[u1u2+v1v2+w1w2(u12+v12+w12)(u22+v22+w22)] …… (II)

Here, λ is the angle between slip direction and the direction of crystal orientation.

Write the expression for relation between resolved shear stress and tensile proportional limit stress.

  τCRSS=σycosλcosϕ …… (III)

Here, τCRSS is the resolved shear stress and σy is the tensile proportional limit stress.

Calculation:

Substitute 0 for u1 , 1 for v1 , 1 for w1 , 0 for u2 , 0 for v2 and 1 for w2 in equation (I).

  ϕ=cos1[(0)(0)+(1)(0)+(1)(1)(02+12+12)(02+02+12)]=cos1[12(1)]=cos1[12]=45°

Substitute 1 for u1 , 1 for v1 , 1 for w1 , 0 for u2 , 0 for v2 and 1 for w2 in equation (II).

  λ=cos1[(1)(0)+(1)(0)+(1)(1)(02+12+12)(02+02+12)]=cos1[13(1)]=cos1[13]=54.74°

Substitute 45° for ϕ , 20×106Pa for τCRSS and 54.74° for λ in equation (III).

  20×106Pa=σycos(54.74°)cos(45°)σy=20×106Pacos(54.74°)cos(45°)=20×106Pa(0.577)(0.707)=(4.90×107Pa)(106MPa1Pa)

Further simplify the above,

  σy=((4.90×107Pa)(106MPa1Pa))=49MPa

Conclusion:

Thus, the tensile proportional limit stress is 49MPa .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
4. The storm hyetograph below produced 530 acre-ft of runoff over the 725-acre Green River watershed. Plot the storm hyetograph and compute and plot the excess rainfall hyetograph using the op-index method. Time (hours) 0-33-66-99-12 12-15 Rainfall Intensity (in/hr) 0.2 0.8|1.2 1.8 0.9
-125 mm -125 mm -125 mm 100 mm P A C 310 x 45 made of A36 is connected to a plate and carries a load P in tension. The bolts are 22-mm in diameter and is staggered as shown in figure PSAD-016. Properties of C 310 x 45 A = 5680 mm² d = 305 mm t = 12.7 mm tw = 13.0 mm b = 80.5 mm x = 17.1 mm Determine the shear lag factor of the channel. Determine the effective net area of the section in mm². Compute the design capacity of the section.
Please answer the following and show the step by step answer on clear paper

Chapter 6 Solutions

Materials Science and Engineering Properties, SI Edition

Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning