Materials Science and Engineering Properties, SI Edition
Materials Science and Engineering Properties, SI Edition
1st Edition
ISBN: 9781305178175
Author: GILMORE, Charles
Publisher: Cengage Learning
bartleby

Videos

Question
Book Icon
Chapter 6, Problem 1CQ
To determine

The result obtained by dividing the tensile force with the original cross-sectional area of specimen.

Expert Solution & Answer
Check Mark

Answer to Problem 1CQ

The result obtained by dividing the tensile force with the original cross-sectional area of specimen is Engineering Normal stress.

Explanation of Solution

Consider a specimen having a cross-sectional area as A and a tensile force with magnitude F acts axially on it. As the applied force tries to deform the material the material experience the restoring force over the cross-section.

The result of this tensile force over the cross-sectional area over the specimen is known as engineering normal stress.

Thus, the result obtained by dividing the tensile force with the original cross-sectional area of specimen is Engineering Normal stress.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Calculate the area of the following polygon using the abscissa and projection method, taking into account the necessary adjustments before calculating the area of the polygon using the compass rule. Latitude Departure Side 930.63 N 930.63 S 1272 E 1271 W AB 122.14 E=12/2-1271-1 cr=-1 680 BC 173.83 length 591 CD 669.13 109.08 DE 139.36 961.1 EA 756.80 201.82 330.63/ 430.65 DEP=L SIN (O) >L DEP/SIN(O) LAT = L COS (0) DEPILATESIN(OYCOS (0)= TAN (0) O TAN-1 (DEP/LAT)= asztan Dept
Estimate the material quantities (cement, sand, gravel, and steel reinforcement) required for constructing 120 m concrete channel of the following typical cross section, concrete mix of 1:1.5:3 and thickness of 20 cm. Figure (1) Figure (1) 12250- 16300
a) A 14-ft. tall and12-ft.-8-in. long fully grouted reinforced masonry wall is constructed of 8-in.CMU. It is to be analyzed for out-of-plane loading. Construct thenP -nM curves for the wallwith the following three vertical reinforcement scenarios: (1) 10 No. 6 bars at 16 in. spacing,(2) 10 No. 5 bars at 16 in. spacing, and (3) 7 No. 4 bars at 24 in. spacing. The steel is Grade60 with a modulus of elasticity of 29,000 ksi, and the masonry has a compressive strength of2,000 psi. You may use Excel or Matlab to construct the curves. Also, show the maximumnPallowed by the code for each case.(b) For each of the above reinforcement scenarios, determine the maximum axial loads that arepermitted for the tension-controlled condition and transition condition.(c) Discuss how the amount of vertical reinforcement affects thenPn-Mn curve.

Chapter 6 Solutions

Materials Science and Engineering Properties, SI Edition

Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Text book image
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Experimental Testing of a Real Scale Flat Slab Building for Gravity and Lateral Loading; Author: American Concrete Institute;https://www.youtube.com/watch?v=t3jybLy7ev8;License: Standard Youtube License