Materials Science and Engineering Properties, SI Edition
Materials Science and Engineering Properties, SI Edition
1st Edition
ISBN: 9781305178175
Author: GILMORE, Charles
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 6, Problem 6.5P
To determine

Compare the true and engineering strain energy density, the strain energy absorbed in natural rubber and energy stored in steel specimen.

Expert Solution & Answer
Check Mark

Answer to Problem 6.5P

The true and engineering strain energy density is 1.6 times the engineering strain density for natural rubber and the strain energy absorbed in natural rubber and energy stored in steel specimen have a huge difference because rubber can strain more and can store more energy inside it due to application of force on it.

Explanation of Solution

Given:

Engineering strain is 6.0 .

Write the expression for engineering secant elastic moduli of natural rubber.

  Esec(ε)=σε .......... (1)

Here, Esec are the engineering secant elastic moduli, σ is the engineering stress of natural rubber and ε is the engineering strain.

Write the expression for true secant elastic moduli of natural rubber.

  Esec(εt)=σtεt .......... (2)

Here, Esec are the true secant elastic moduli, σt is the true stress of natural rubber and εt is the true strain.

Write the expression for engineering strain energy absorbed in natural rubber.

  SE=σ22Esec(ε) .......... (3)

Here, SE is the engineering strain energy absorbed by natural rubber.

Write the expression for true strain energy absorbed in natural rubber.

  (SE)t=σt22Esec(εt) .......... (4)

Here, (SE)t is the true strain energy absorbed by natural rubber.

Refer to Example 6.2, the engineering stress for natural rubber is 60×106Pa .

Substitute 60×106Pa for σ and 6.0 for ε in equation (1).

  Esec(6.0)=60× 106 Pa6.0=10×106Pa( 1MPa 10 6 Pa)=10MPa

Refer to Example 6.2, the true stress for natural rubber is 293×106 Pa and true strain for natural rubber is 1.95 .

Substitute 293×106Pa for σt and 1.95 for εt in equation (1).

  Esec(1.95)=293× 106 Pa1.95=150×106Pa( 1MPa 10 6 Pa)=150MPa

Substitute 60×106Pa for σ and 10 MPa for Esec(ε) in equation (3).

  SE= ( 60× 10 6 )22( 10MPa)( 1 0 6  Pa 1MPa )=3600× 10 1220× 106=180×106J/m3

Substitute 293×106Pa for σt and 150 MPa for Esec(εt) in equation (4).

  (SE)t= ( 293× 10 6 )22( 150MPa)( 1 0 6  Pa 1MPa )=85849× 10 12300× 106=286×106J/m3

The true strain energy absorbed by natural rubber is 1.6 times the engineering strain energy absorbed by natural rubber. The variation in values indicates the difference in measurement through theoretical and practical approach.

Refer to example 6.5, the value of strain energy for steel specimen is 0.245×106J/m3 . The strain energy of rubber is greater than the strain energy for natural rubber because rubber can strain more than the steel specimen under the application of load.

Thus, the true and engineering strain energy density is 1.6 times the engineering strain density for natural rubber and the strain energy absorbed in natural rubber and energy stored in steel specimen have a huge difference because rubber can strain more and can store more energy inside it due to application of force on it.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Calculate internal moments at D and E for beam CDE showing all working.  Assume the support at A is a roller and B is a pin.  There are fixed connected joints at D and E.  Assume P equals 9.6 and w equals 0.36
Determine the heel and toe stresses and the factor of safeties for sliding and overturning for the gravity dam section shown in the figure below for the following loading conditions: - - - - - Horizontal earthquake (Kh) = 0.1 Normal uplift pressure with gallery drain working Silt deposit up to 30 m height No wave pressure and no ice pressure Unit weight of concrete = 2.4 Ton/m³ and unit weight of silty water = 1.4 Ton/m³ - Submerged weight of silt = 0.9 Ton/m³ - Coefficient of friction = 0.65 and angle of repose = 25° Solve this question with the presence of gallery and without gallery., discuss the issue in both cases.... 144 m 4m 8m 6m Wi 8m +7m. 120m
Studies have shown that the traffic flow on a two-lane road adjacent to a school can be described by the Greenshields model. A length of 0.5 mi adjacent to a school is described as a school zone (see the figure) and operates for a period of 30 min just before the start of school and just after the close of school. The posted speed limit for the school zone during its operation is 15 mi/h. Data collected at the site when the school zone is not in operation show that the jam density and mean free speed for each lane are 136 veh/mi and 63 mi/h. If the demand flow on the highway at the times of operation of the school zone is 90% of the capacity of the highway, determine the following. 0.5 mile School Zone (a) the velocity of the shock wave created by the operation of the school zone (Enter the velocity of the backward forming shock wave in mi/h. Indicate the direction with the sign of your answer.) mi/h (b) the number of vehicles affected by the school zone during this 30-minute operation…

Chapter 6 Solutions

Materials Science and Engineering Properties, SI Edition

Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Text book image
Steel Design (Activate Learning with these NEW ti...
Civil Engineering
ISBN:9781337094740
Author:Segui, William T.
Publisher:Cengage Learning