Linear Algebra with Applications (9th Edition) (Featured Titles for Linear Algebra (Introductory))
9th Edition
ISBN: 9780321962218
Author: Steven J. Leon
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 6, Problem 5E
To determine
To compute: the eigenvalues and eigenvectors of the sixth matrixby using MATLAB
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Use the graphs to find estimates for the solutions of the simultaneous equations.
21:46 MM
:
0 % sparxmaths.uk/studer
Sparx Maths
+
13
24,963 XP Andrey Roura
1A ✓
1B X
1C
1D
Summary
Bookwork code: 1B
歐
Calculator
not allowed
Write the ratio 3
: 1½ in its simplest form.
32
Menu
Use the graph to solve 3x2-3x-8=0
Chapter 6 Solutions
Linear Algebra with Applications (9th Edition) (Featured Titles for Linear Algebra (Introductory))
Ch. 6.1 - Find the eigenvalues and the corresponding...Ch. 6.1 - Show that the eigenvalues of a triangular matrix...Ch. 6.1 - Let A be an nn matrix. Prove that A is singular if...Ch. 6.1 - Let A be a nonsingular matrix and let be an...Ch. 6.1 - Let A and B be nn matrices. Show that if none of...Ch. 6.1 - Let be an eigenvalue of A and let x be an...Ch. 6.1 - Let A bean nn matrix and let B=I2A+A2. Show that...Ch. 6.1 - An nn matrix A is said to be idempotent if A2=A....Ch. 6.1 - An nn matrix is said to be nilpotent if Ak=O for...Ch. 6.1 - Let A be an nn matrix and let B=AI for some scalar...
Ch. 6.1 - Let A be an nn matrix and let B=A+I. Is it...Ch. 6.1 - Show that A and AT have the same eigenvalues. Do...Ch. 6.1 - Show that the matrix A=( cos sin sin cos) will...Ch. 6.1 - Let A be a 22 matrix. If tr(A)=8 and det(A)=12,...Ch. 6.1 - Let A=(aij) be an nn matrix with eigenvalues...Ch. 6.1 - Prob. 16ECh. 6.1 - Prob. 17ECh. 6.1 - Let A be an nn matrix and let be an eigenvalue of...Ch. 6.1 - Prob. 19ECh. 6.1 - Let =+bi and =c+di be complex scalars and let A...Ch. 6.1 - Let Q be an orthogonal matrix. Show that if is an...Ch. 6.1 - Let Q be an orthogonal matrix with an eigenvalue...Ch. 6.1 - Let Q be a 33 orthogonal matrix whose determinant...Ch. 6.1 - Let x1,...,xr be eigenvectors of an nn matrix A...Ch. 6.1 - Let A bean nn matrix and let be an eigenvalue of...Ch. 6.1 - Let B=S1AS and let x be an eigenvector of B...Ch. 6.1 - Let A be an nn matrix with an eigenvalue and let...Ch. 6.1 - Prob. 28ECh. 6.1 - Let A be an nn matrix and let be a nonzero...Ch. 6.1 - Prob. 30ECh. 6.1 - Let A be a matrix whose columns all add up to a...Ch. 6.1 - Let 1 and 2 be distinct eigenvalues of A. Let x be...Ch. 6.1 - Let A and B be nn matrices. Show that (a) If is a...Ch. 6.1 - Prove that there do not exist nn matrices A and B...Ch. 6.1 - Let p()=(1)n(nan1n1a1a0) be a polynomial of degree...Ch. 6.1 - The result given in Exercise 35(b) holds even if...Ch. 6.2 - Find the general solution of each of the following...Ch. 6.2 - Solve each of the following initial value...Ch. 6.2 - Given Y=c1e1tx1+c2e2tx2++cnentxn is the solution...Ch. 6.2 - Two tanks each contain 100 liters of a mixture....Ch. 6.2 - Prob. 5ECh. 6.2 - Solve the initial value problem...Ch. 6.2 - In Application 2, assume that the solutions are of...Ch. 6.2 - Solve the the problem in Application 2, using the...Ch. 6.2 - Prob. 9ECh. 6.2 - Three masses are connected by a series of springs...Ch. 6.2 - Transform the nth-order equation...Ch. 6.3 - In each of the following, factor the matrix A into...Ch. 6.3 - For each of the matrices in Exercise 1, use the...Ch. 6.3 - For each of the nonsingular matrices in Exercise...Ch. 6.3 - For each of the following, find a matrix B such...Ch. 6.3 - Let A be a nondefective nn matrix with...Ch. 6.3 - Let A be a diagonalizable matrix whose eigenvalues...Ch. 6.3 - Show that any 33 matrix of the form (a100a100b) is...Ch. 6.3 - For each of the following, find all possible...Ch. 6.3 - Let A be a 44 matrix and let be an eigenvalue of...Ch. 6.3 - Prob. 10ECh. 6.3 - Let A be a nn matrix with real entries and let...Ch. 6.3 - Let A be an nn matrix with an eigenvalue of...Ch. 6.3 - Show that a nonzero nilpotent matrix is defective.Ch. 6.3 - Let A be a diagonalizable matrix and let X be the...Ch. 6.3 - It follows from Exercise 14 that for a...Ch. 6.3 - Prob. 16ECh. 6.3 - Let x, y, be nonzero vectors in n,n2, and let...Ch. 6.3 - Let A be a diagonalizable nn matrix. Prove that if...Ch. 6.3 - Prob. 19ECh. 6.3 - Let T be an upper triangular matrix with distinct...Ch. 6.3 - Each year, employees at a company are given the...Ch. 6.3 - The city of Mawtookit maintains a constant...Ch. 6.3 - Let A=( 1 2 1 3 1 5 1 4 1 3 2 5 1 4 1 3 2 5 ) be a...Ch. 6.3 - Prob. 24ECh. 6.3 - Prob. 25ECh. 6.3 - Consider a Web network consisting of only four...Ch. 6.3 - Prob. 27ECh. 6.3 - The transition matrix in Example 5 has the...Ch. 6.3 - Let A be the PageRank transition matrix and let xk...Ch. 6.3 - Use the definition of the matrix exponential to...Ch. 6.3 - Compute eA for each of the following matrices: A=(...Ch. 6.3 - In each of the following, solve the initial value...Ch. 6.3 - Let X be an eigenvalue of an nn matrix A and let x...Ch. 6.3 - Show that eA is nonsingular for any diagonalizable...Ch. 6.3 - Let A be a diagonalizable matrix with...Ch. 6.4 - For each of the following pairs of vectors z and...Ch. 6.4 - Let z1=( 1+i 2 1i 2 ) and z2=( i 2 1 2 ) Show...Ch. 6.4 - Let {u1,u2} be an orthonormal basis for 2, and let...Ch. 6.4 - Which of the matrices that follow are Hermitian?...Ch. 6.4 - Find an orthogonal or unitary diagonalizing matrix...Ch. 6.4 - Prob. 6ECh. 6.4 - Let A be an nn Hermitian matrix and let x be a...Ch. 6.4 - Let A be an Hermitian matrix and let B=iA. Show...Ch. 6.4 - Let A and C be matrices in mn and let Bnr. Prove...Ch. 6.4 - Prob. 10ECh. 6.4 - Show that z,w=wHz defines an inner product on n.Ch. 6.4 - Let x, y, and z be vectors in n and let and be...Ch. 6.4 - Let {u1,...,un} be an orthonormal basis for a...Ch. 6.4 - Given that A=(40001i0 i1) find a matrix B such...Ch. 6.4 - Let U be a unitary matrix. Prove that U is normal....Ch. 6.4 - Let u be a unit vector in n and define U=I2uuH....Ch. 6.4 - Show that if a matrix U is both unitary and...Ch. 6.4 - Let A be a 22 matrix with Schur decomposition UTUH...Ch. 6.4 - Let A be a 55 matrix with real entries. Let A=QTQT...Ch. 6.4 - Let A be a nn matrix with Schur decomposition...Ch. 6.4 - Show that M=A+iB (where A and B are real matrices)...Ch. 6.4 - Prob. 22ECh. 6.4 - Prob. 23ECh. 6.4 - Prob. 24ECh. 6.4 - Prob. 25ECh. 6.4 - Let A be a Hermitian matrix with eigenvalues...Ch. 6.4 - Let A=(0110) Write A as a sum 1u1u1T+2u2u2T, where...Ch. 6.4 - Let A be a Hermitian matrix with eigenvalues 12n...Ch. 6.4 - Given Amm,Bnn,Cmn, the equation AXXB=C(3) is known...Ch. 6.5 - Show that A and AT have the same nonzero singular...Ch. 6.5 - Use the method of Example 1 to find the singular...Ch. 6.5 - For each of the matrices in Exercise 2: determine...Ch. 6.5 - Let A=( 28 20 14 19 102 21)=( 3 5 4 5 0 4 5 3 5...Ch. 6.5 - The matrix A=(254630630254) has singular value...Ch. 6.5 - Prove that if A is a symmetric matrix with...Ch. 6.5 - Let A be an mn matrix with singular value...Ch. 6.5 - Let A be an nn matrix. Show that ATA and AAT are...Ch. 6.5 - Let A be an nn matrix with singular values...Ch. 6.5 - Let A be an nn matrix with singular value...Ch. 6.5 - Show that if is a singular value of A then there...Ch. 6.5 - Let A be an mn matrix of rank n with singular...Ch. 6.5 - Prob. 13ECh. 6.6 - Find the matrix associated with each of the...Ch. 6.6 - Reorder the eigenvalues in Example 2 so that 1=4...Ch. 6.6 - Prob. 3ECh. 6.6 - Let 1 and 2 be the eigenvalues of A=(abbc) What...Ch. 6.6 - Prob. 5ECh. 6.6 - Which of the matrices that follow are positive...Ch. 6.6 - For each of the following functions, determine...Ch. 6.6 - Show that if A is symmetric positive definite,...Ch. 6.6 - Prob. 9ECh. 6.6 - Prob. 10ECh. 6.6 - Let A be a symmetric nn matrix with eigenvalues...Ch. 6.6 - Prob. 12ECh. 6.6 - Prob. 13ECh. 6.6 - Let A be a symmetric positive definite nn matrix....Ch. 6.7 - For each of the following matrices, compute the...Ch. 6.7 - Prob. 2ECh. 6.7 - Let A=(2 100 12 100 12 100 12) Compute the LU...Ch. 6.7 - For each of the following, factor the given matrix...Ch. 6.7 - Find the Cholesky decomposition LLT for each of...Ch. 6.7 - Prob. 6ECh. 6.7 - Prove each of the following: If U is a unit upper...Ch. 6.7 - Prob. 8ECh. 6.7 - Let A be a symmetric positive definite matrix with...Ch. 6.7 - Let A be an mn matrix with rank n. Show that the...Ch. 6.7 - Prob. 11ECh. 6.7 - Let A be a symmetric positive definite matrix and...Ch. 6.7 - Prob. 13ECh. 6.7 - Prob. 14ECh. 6.7 - Prob. 15ECh. 6.7 - Let A be an nn symmetric negative definite matrix....Ch. 6.7 - Prob. 17ECh. 6.8 - Find the eigenvalues of each of the following...Ch. 6.8 - Prob. 2ECh. 6.8 - Find the output vector x in the open version of...Ch. 6.8 - Consider the closed version of the Leontief...Ch. 6.8 - Prob. 5ECh. 6.8 - Prob. 6ECh. 6.8 - Which of the matrices that follow are reducible?...Ch. 6.8 - Prob. 8ECh. 6.8 - Prob. 9ECh. 6.8 - Prove that a 22 matrix A is reducible if and only...Ch. 6.8 - Prove the Forbenius theorem in the case where A is...Ch. 6.8 - Prob. 12ECh. 6.8 - Let A be an nn positive stochastic matrix with...Ch. 6.8 - Would the results of parts (c) and (d) in Exercise...Ch. 6.8 - A management student received fellowship offers...Ch. 6 - The top matrix on the menu is the diagonal matrix...Ch. 6 - Prob. 2ECh. 6 - Prob. 3ECh. 6 - Prob. 4ECh. 6 - Prob. 5ECh. 6 - Prob. 6ECh. 6 - Prob. 7ECh. 6 - The last item on the eigshow menu will generate a...Ch. 6 - Prob. 9ECh. 6 - Prob. 10ECh. 6 - Prob. 11ECh. 6 - Consider the matrices A=(5 33 5) and B=(5 335)...Ch. 6 - Prob. 13ECh. 6 - Prob. 14ECh. 6 - Prob. 15ECh. 6 - Prob. 16ECh. 6 - Prob. 17ECh. 6 - Prob. 18ECh. 6 - Prob. 19ECh. 6 - Let A be a nonsingular 22 matrix with singular...Ch. 6 - Set A=[1,1;0.5,0.5] and use MATLAB to verify each...Ch. 6 - Prob. 22ECh. 6 - Prob. 23ECh. 6 - Prob. 24ECh. 6 - Prob. 25ECh. 6 - If A is an nn matrix whose eigenvalues are all...Ch. 6 - If A is nn matrix, then A and AT have the same...Ch. 6 - If A and B are similar matrices, then they have...Ch. 6 - If A and B are nn matrices with the same...Ch. 6 - If A has eigenvalues of multiplicity greater than...Ch. 6 - If A is a 44 matrix of rank 3 and =0 is an...Ch. 6 - If A is a 44 matrix of rank 1 and =0 is an...Ch. 6 - The rank of an nn matrix A is equal to the number...Ch. 6 - The rank of an mn matrix A is equal to the number...Ch. 6 - If A is Hermitian and c is a complex scalar, then...Ch. 6 - If an nn matrix A has Schur decomposition A=UTUH,...Ch. 6 - If A is normal, but not Hermitian, then A must...Ch. 6 - Prob. 13CTACh. 6 - Prob. 14CTACh. 6 - If A is symmetric, then eA is symmetric positive...Ch. 6 - Let A=(10011 112 2) Find the eigenvalues of A. For...Ch. 6 - Let A be a 44 matrix with real entries that has...Ch. 6 - Let A be a nonsingular nn matrix and let be an...Ch. 6 - Show that if A is a matrix of the form...Ch. 6 - Let A=(4222 10 102 10 14) Without computing the...Ch. 6 - Prob. 6CTBCh. 6 - Prob. 7CTBCh. 6 - Let A be a 44 real symmetric matrix with...Ch. 6 - Let {u1,u2} be an orthonormal basis for 2 and...Ch. 6 - Let A be a 55 nonsymmetric matrix with rank equal...Ch. 6 - Let A and B be nn matrices. If A is real and...Ch. 6 - Let A be a matrix whose singular value...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- Într-un bloc sunt apartamente cu 2 camere și apartamente cu 3 camere , în total 20 de apartamente și 45 de camere.Calculați câte apartamente sunt cu 2 camere și câte apartamente sunt cu 3 camere.arrow_forward1.2.19. Let and s be natural numbers. Let G be the simple graph with vertex set Vo... V„−1 such that v; ↔ v; if and only if |ji| Є (r,s). Prove that S has exactly k components, where k is the greatest common divisor of {n, r,s}.arrow_forwardQuestion 3 over a field K. In this question, MË(K) denotes the set of n × n matrices (a) Suppose that A Є Mn(K) is an invertible matrix. Is it always true that A is equivalent to A-¹? Justify your answer. (b) Let B be given by 8 B = 0 7 7 0 -7 7 Working over the field F2 with 2 elements, compute the rank of B as an element of M2(F2). (c) Let 1 C -1 1 [4] [6] and consider C as an element of M3(Q). Determine the minimal polynomial mc(x) and hence, or otherwise, show that C can not be diagonalised. [7] (d) Show that C in (c) considered as an element of M3(R) can be diagonalised. Write down all the eigenvalues. Show your working. [8]arrow_forward
- R denotes the field of real numbers, Q denotes the field of rationals, and Fp denotes the field of p elements given by integers modulo p. You may refer to general results from lectures. Question 1 For each non-negative integer m, let R[x]m denote the vector space consisting of the polynomials in x with coefficients in R and of degree ≤ m. x²+2, V3 = 5. Prove that (V1, V2, V3) is a linearly independent (a) Let vi = x, V2 = list in R[x] 3. (b) Let V1, V2, V3 be as defined in (a). Find a vector v € R[×]3 such that (V1, V2, V3, V4) is a basis of R[x] 3. [8] [6] (c) Prove that the map ƒ from R[x] 2 to R[x]3 given by f(p(x)) = xp(x) — xp(0) is a linear map. [6] (d) Write down the matrix for the map ƒ defined in (c) with respect to the basis (2,2x + 1, x²) of R[x] 2 and the basis (1, x, x², x³) of R[x] 3. [5]arrow_forwardQuestion 4 (a) The following matrices represent linear maps on R² with respect to an orthonormal basis: = [1/√5 2/√5 [2/√5 -1/√5] " [1/√5 2/√5] A = B = [2/√5 1/√5] 1 C = D = = = [ 1/3/5 2/35] 1/√5 2/√5 -2/√5 1/√5' For each of the matrices A, B, C, D, state whether it represents a self-adjoint linear map, an orthogonal linear map, both, or neither. (b) For the quadratic form q(x, y, z) = y² + 2xy +2yz over R, write down a linear change of variables to u, v, w such that q in these terms is in canonical form for Sylvester's Law of Inertia. [6] [4]arrow_forwardpart b pleasearrow_forward
- Question 5 (a) Let a, b, c, d, e, ƒ Є K where K is a field. Suppose that the determinant of the matrix a cl |df equals 3 and the determinant of determinant of the matrix a+3b cl d+3e f ГЪ e [ c ] equals 2. Compute the [5] (b) Calculate the adjugate Adj (A) of the 2 × 2 matrix [1 2 A = over R. (c) Working over the field F3 with 3 elements, use row and column operations to put the matrix [6] 0123] A = 3210 into canonical form for equivalence and write down the canonical form. What is the rank of A as a matrix over F3? 4arrow_forwardQuestion 2 In this question, V = Q4 and - U = {(x, y, z, w) EV | x+y2w+ z = 0}, W = {(x, y, z, w) € V | x − 2y + w − z = 0}, Z = {(x, y, z, w) € V | xyzw = 0}. (a) Determine which of U, W, Z are subspaces of V. Justify your answers. (b) Show that UW is a subspace of V and determine its dimension. (c) Is VU+W? Is V = UW? Justify your answers. [10] [7] '00'arrow_forwardTools Sign in Different masses and Indicated velocities Rotational inert > C C Chegg 39. The balls shown have different masses and speeds. Rank the following from greatest to least: 2.0 m/s 8.5 m/s 9.0 m/s 12.0 m/s 1.0 kg A 1.2 kg B 0.8 kg C 5.0 kg D C a. The momenta b. The impulses needed to stop the balls Solved 39. The balls shown have different masses and speeds. | Chegg.com Images may be subject to copyright. Learn More Share H Save Visit > quizlet.com%2FBoyE3qwOAUqXvw95Fgh5Rw.jpg&imgrefurl=https%3A%2F%2Fquizlet.com%2F529359992%2Fc. Xarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageElements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Lecture 46: Eigenvalues & Eigenvectors; Author: IIT Kharagpur July 2018;https://www.youtube.com/watch?v=h5urBuE4Xhg;License: Standard YouTube License, CC-BY
What is an Eigenvector?; Author: LeiosOS;https://www.youtube.com/watch?v=ue3yoeZvt8E;License: Standard YouTube License, CC-BY