Let A be the PageRank transition matrix and let
then
where M, E, e, and p are as defied in equation (5).
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
Linear Algebra with Applications (9th Edition) (Featured Titles for Linear Algebra (Introductory))
Additional Math Textbook Solutions
Algebra 1
Elementary Algebra For College Students (9th Edition)
Glencoe Algebra 1, Student Edition, 9780079039897, 0079039898, 2018
College Algebra (5th Edition)
Algebra: Structure And Method, Book 1
- Explain how you can determine the steady state matrix X of an absorbing Markov chain by inspection.arrow_forward12. Robots have been programmed to traverse the maze shown in Figure 3.28 and at each junction randomly choose which way to go. Figure 3.28 (a) Construct the transition matrix for the Markov chain that models this situation. (b) Suppose we start with 15 robots at each junction. Find the steady state distribution of robots. (Assume that it takes each robot the same amount of time to travel between two adjacent junctions.)arrow_forwardConsider the Markov chain whose matrix of transition probabilities P is given in Example 7b. Show that the steady state matrix X depends on the initial state matrix X0 by finding X for each X0. X0=[0.250.250.250.25] b X0=[0.250.250.400.10] Example 7 Finding Steady State Matrices of Absorbing Markov Chains Find the steady state matrix X of each absorbing Markov chain with matrix of transition probabilities P. b.P=[0.500.200.210.300.100.400.200.11]arrow_forward
- Suppose that in any given period an unemployed person will find a job with probability 0.7 and will therefore remain unemployed with a probability of 0.3. Additionally, persons who find themselves employed in any given period may lose their job with a probability of 0.1 (and will have a 0.9 probability of remaining employed). Write out the Markov system of difference equations for this economy. Compute the stationary distributions.arrow_forwardEvery day, Eric takes the same street from his home to the university. There are 4 streetlights along his way, and Eric has noticed the following Markov dependence. If he sees agreen light at an intersection, then 60% of time the next light is also green, and 40% of timethe next light is red. However, if he sees a red light, then 70% of time the next light is alsored, and 30% of time the next light is green.(a) Construct the transition probability matrix for the street lights.(b) If the first light is green, what is the probability that the third light is red?(c) Eric’s classmate Jacob has many street lights between his home and the university. Ifthe first street light is green, what is the probability that the last street light is red?(Use the steady-state distribution.)arrow_forwardProve that the square of a Markov matrix is also a Markov matrix.arrow_forward
- A certain calculating machine uses only the digits 0 and 1. It is supposed to transmit one of these digits through several stages. However, at every stage, there is a probability p that the digit that enters this stage will be changed when it leaves and a probability q = 1 − p that it won’t. Form a Markov chain to represent the process oftransmission by taking as states the digits 0 and 1. What is the matrix of transition probabilities? Now draw a tree and assign probabilities assuming that the process begins in state 0 and moves through two stages of transmission. What is the probability that the machine, after two stages, produces the digit 0 (i.e., the correct digit)?arrow_forwardSuppose a math professor collects data on the probability that students attending a given class meeting will attend the next one. He finds that 95% of students who attended a given class meeting will attend the following class meeting and that 25% of students who do not attend attend a given class meeting will not attend the next one. Build a discrete dynamical system model using linear algebra. Be sure to state your transition matrix explicitly. What percentage of students does your model predict will be attending class meetings by the end of the semester (in the long run)?arrow_forward
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage Learning