Linear Algebra with Applications (9th Edition) (Featured Titles for Linear Algebra (Introductory))
9th Edition
ISBN: 9780321962218
Author: Steven J. Leon
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 6.3, Problem 26E
Consider a Web network consisting of only four sites that are linked together as shown in the ac-
companying diagram. If the Google PageRank algorithm is used to rank these pages, determine the transition matrix A. Assume that the Web surfer will follow a link on the current page 85 percent of the time.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
This graph shows data from people from the sub-Saharan area of Africa who have contracted HIV. Outcomes for the patients were recorded as one of 4 mutually possibilities: alive and still in care at the original clinic, alive and still in care after transferring to a new clinic, alive but no longer visiting a clinic, or they’re dead. Keep in mind that this data were collected are from clinical records. Assume that the sample is a random representation of sub-Saharan Africans with HIV. Antiretroviral therapy is used to treat patients.
What is the experimental unit? What are the variables (including the types)?
Researchers investigated two kinds of laugh tracks – one with posed laughter and one with spontaneous laughter. Recall that to create the posed laughter laugh track, the researchers asked people to laugh and recorded the results. The researchers also tested the same 40 jokes with a spontaneous laughing laugh track, which they created by having people watch funny videos and recording their laughter. The data can be found in the file LaughTypes in pictures. Put these data into the Matched Pairs applet to investigate whether the type of laughter makes a difference in the ratings of the jokes and also do parts (a) (b) and (c):
The 2 missing activity times in the following network are:
A = 4
B = 6
2.
1.
2
3.
5.
B.
What is the Latest Start Time for Activity 3?
Chapter 6 Solutions
Linear Algebra with Applications (9th Edition) (Featured Titles for Linear Algebra (Introductory))
Ch. 6.1 - Find the eigenvalues and the corresponding...Ch. 6.1 - Show that the eigenvalues of a triangular matrix...Ch. 6.1 - Let A be an nn matrix. Prove that A is singular if...Ch. 6.1 - Let A be a nonsingular matrix and let be an...Ch. 6.1 - Let A and B be nn matrices. Show that if none of...Ch. 6.1 - Let be an eigenvalue of A and let x be an...Ch. 6.1 - Let A bean nn matrix and let B=I2A+A2. Show that...Ch. 6.1 - An nn matrix A is said to be idempotent if A2=A....Ch. 6.1 - An nn matrix is said to be nilpotent if Ak=O for...Ch. 6.1 - Let A be an nn matrix and let B=AI for some scalar...
Ch. 6.1 - Let A be an nn matrix and let B=A+I. Is it...Ch. 6.1 - Show that A and AT have the same eigenvalues. Do...Ch. 6.1 - Show that the matrix A=( cos sin sin cos) will...Ch. 6.1 - Let A be a 22 matrix. If tr(A)=8 and det(A)=12,...Ch. 6.1 - Let A=(aij) be an nn matrix with eigenvalues...Ch. 6.1 - Prob. 16ECh. 6.1 - Prob. 17ECh. 6.1 - Let A be an nn matrix and let be an eigenvalue of...Ch. 6.1 - Prob. 19ECh. 6.1 - Let =+bi and =c+di be complex scalars and let A...Ch. 6.1 - Let Q be an orthogonal matrix. Show that if is an...Ch. 6.1 - Let Q be an orthogonal matrix with an eigenvalue...Ch. 6.1 - Let Q be a 33 orthogonal matrix whose determinant...Ch. 6.1 - Let x1,...,xr be eigenvectors of an nn matrix A...Ch. 6.1 - Let A bean nn matrix and let be an eigenvalue of...Ch. 6.1 - Let B=S1AS and let x be an eigenvector of B...Ch. 6.1 - Let A be an nn matrix with an eigenvalue and let...Ch. 6.1 - Prob. 28ECh. 6.1 - Let A be an nn matrix and let be a nonzero...Ch. 6.1 - Prob. 30ECh. 6.1 - Let A be a matrix whose columns all add up to a...Ch. 6.1 - Let 1 and 2 be distinct eigenvalues of A. Let x be...Ch. 6.1 - Let A and B be nn matrices. Show that (a) If is a...Ch. 6.1 - Prove that there do not exist nn matrices A and B...Ch. 6.1 - Let p()=(1)n(nan1n1a1a0) be a polynomial of degree...Ch. 6.1 - The result given in Exercise 35(b) holds even if...Ch. 6.2 - Find the general solution of each of the following...Ch. 6.2 - Solve each of the following initial value...Ch. 6.2 - Given Y=c1e1tx1+c2e2tx2++cnentxn is the solution...Ch. 6.2 - Two tanks each contain 100 liters of a mixture....Ch. 6.2 - Prob. 5ECh. 6.2 - Solve the initial value problem...Ch. 6.2 - In Application 2, assume that the solutions are of...Ch. 6.2 - Solve the the problem in Application 2, using the...Ch. 6.2 - Prob. 9ECh. 6.2 - Three masses are connected by a series of springs...Ch. 6.2 - Transform the nth-order equation...Ch. 6.3 - In each of the following, factor the matrix A into...Ch. 6.3 - For each of the matrices in Exercise 1, use the...Ch. 6.3 - For each of the nonsingular matrices in Exercise...Ch. 6.3 - For each of the following, find a matrix B such...Ch. 6.3 - Let A be a nondefective nn matrix with...Ch. 6.3 - Let A be a diagonalizable matrix whose eigenvalues...Ch. 6.3 - Show that any 33 matrix of the form (a100a100b) is...Ch. 6.3 - For each of the following, find all possible...Ch. 6.3 - Let A be a 44 matrix and let be an eigenvalue of...Ch. 6.3 - Prob. 10ECh. 6.3 - Let A be a nn matrix with real entries and let...Ch. 6.3 - Let A be an nn matrix with an eigenvalue of...Ch. 6.3 - Show that a nonzero nilpotent matrix is defective.Ch. 6.3 - Let A be a diagonalizable matrix and let X be the...Ch. 6.3 - It follows from Exercise 14 that for a...Ch. 6.3 - Prob. 16ECh. 6.3 - Let x, y, be nonzero vectors in n,n2, and let...Ch. 6.3 - Let A be a diagonalizable nn matrix. Prove that if...Ch. 6.3 - Prob. 19ECh. 6.3 - Let T be an upper triangular matrix with distinct...Ch. 6.3 - Each year, employees at a company are given the...Ch. 6.3 - The city of Mawtookit maintains a constant...Ch. 6.3 - Let A=( 1 2 1 3 1 5 1 4 1 3 2 5 1 4 1 3 2 5 ) be a...Ch. 6.3 - Prob. 24ECh. 6.3 - Prob. 25ECh. 6.3 - Consider a Web network consisting of only four...Ch. 6.3 - Prob. 27ECh. 6.3 - The transition matrix in Example 5 has the...Ch. 6.3 - Let A be the PageRank transition matrix and let xk...Ch. 6.3 - Use the definition of the matrix exponential to...Ch. 6.3 - Compute eA for each of the following matrices: A=(...Ch. 6.3 - In each of the following, solve the initial value...Ch. 6.3 - Let X be an eigenvalue of an nn matrix A and let x...Ch. 6.3 - Show that eA is nonsingular for any diagonalizable...Ch. 6.3 - Let A be a diagonalizable matrix with...Ch. 6.4 - For each of the following pairs of vectors z and...Ch. 6.4 - Let z1=( 1+i 2 1i 2 ) and z2=( i 2 1 2 ) Show...Ch. 6.4 - Let {u1,u2} be an orthonormal basis for 2, and let...Ch. 6.4 - Which of the matrices that follow are Hermitian?...Ch. 6.4 - Find an orthogonal or unitary diagonalizing matrix...Ch. 6.4 - Prob. 6ECh. 6.4 - Let A be an nn Hermitian matrix and let x be a...Ch. 6.4 - Let A be an Hermitian matrix and let B=iA. Show...Ch. 6.4 - Let A and C be matrices in mn and let Bnr. Prove...Ch. 6.4 - Prob. 10ECh. 6.4 - Show that z,w=wHz defines an inner product on n.Ch. 6.4 - Let x, y, and z be vectors in n and let and be...Ch. 6.4 - Let {u1,...,un} be an orthonormal basis for a...Ch. 6.4 - Given that A=(40001i0 i1) find a matrix B such...Ch. 6.4 - Let U be a unitary matrix. Prove that U is normal....Ch. 6.4 - Let u be a unit vector in n and define U=I2uuH....Ch. 6.4 - Show that if a matrix U is both unitary and...Ch. 6.4 - Let A be a 22 matrix with Schur decomposition UTUH...Ch. 6.4 - Let A be a 55 matrix with real entries. Let A=QTQT...Ch. 6.4 - Let A be a nn matrix with Schur decomposition...Ch. 6.4 - Show that M=A+iB (where A and B are real matrices)...Ch. 6.4 - Prob. 22ECh. 6.4 - Prob. 23ECh. 6.4 - Prob. 24ECh. 6.4 - Prob. 25ECh. 6.4 - Let A be a Hermitian matrix with eigenvalues...Ch. 6.4 - Let A=(0110) Write A as a sum 1u1u1T+2u2u2T, where...Ch. 6.4 - Let A be a Hermitian matrix with eigenvalues 12n...Ch. 6.4 - Given Amm,Bnn,Cmn, the equation AXXB=C(3) is known...Ch. 6.5 - Show that A and AT have the same nonzero singular...Ch. 6.5 - Use the method of Example 1 to find the singular...Ch. 6.5 - For each of the matrices in Exercise 2: determine...Ch. 6.5 - Let A=( 28 20 14 19 102 21)=( 3 5 4 5 0 4 5 3 5...Ch. 6.5 - The matrix A=(254630630254) has singular value...Ch. 6.5 - Prove that if A is a symmetric matrix with...Ch. 6.5 - Let A be an mn matrix with singular value...Ch. 6.5 - Let A be an nn matrix. Show that ATA and AAT are...Ch. 6.5 - Let A be an nn matrix with singular values...Ch. 6.5 - Let A be an nn matrix with singular value...Ch. 6.5 - Show that if is a singular value of A then there...Ch. 6.5 - Let A be an mn matrix of rank n with singular...Ch. 6.5 - Prob. 13ECh. 6.6 - Find the matrix associated with each of the...Ch. 6.6 - Reorder the eigenvalues in Example 2 so that 1=4...Ch. 6.6 - Prob. 3ECh. 6.6 - Let 1 and 2 be the eigenvalues of A=(abbc) What...Ch. 6.6 - Prob. 5ECh. 6.6 - Which of the matrices that follow are positive...Ch. 6.6 - For each of the following functions, determine...Ch. 6.6 - Show that if A is symmetric positive definite,...Ch. 6.6 - Prob. 9ECh. 6.6 - Prob. 10ECh. 6.6 - Let A be a symmetric nn matrix with eigenvalues...Ch. 6.6 - Prob. 12ECh. 6.6 - Prob. 13ECh. 6.6 - Let A be a symmetric positive definite nn matrix....Ch. 6.7 - For each of the following matrices, compute the...Ch. 6.7 - Prob. 2ECh. 6.7 - Let A=(2 100 12 100 12 100 12) Compute the LU...Ch. 6.7 - For each of the following, factor the given matrix...Ch. 6.7 - Find the Cholesky decomposition LLT for each of...Ch. 6.7 - Prob. 6ECh. 6.7 - Prove each of the following: If U is a unit upper...Ch. 6.7 - Prob. 8ECh. 6.7 - Let A be a symmetric positive definite matrix with...Ch. 6.7 - Let A be an mn matrix with rank n. Show that the...Ch. 6.7 - Prob. 11ECh. 6.7 - Let A be a symmetric positive definite matrix and...Ch. 6.7 - Prob. 13ECh. 6.7 - Prob. 14ECh. 6.7 - Prob. 15ECh. 6.7 - Let A be an nn symmetric negative definite matrix....Ch. 6.7 - Prob. 17ECh. 6.8 - Find the eigenvalues of each of the following...Ch. 6.8 - Prob. 2ECh. 6.8 - Find the output vector x in the open version of...Ch. 6.8 - Consider the closed version of the Leontief...Ch. 6.8 - Prob. 5ECh. 6.8 - Prob. 6ECh. 6.8 - Which of the matrices that follow are reducible?...Ch. 6.8 - Prob. 8ECh. 6.8 - Prob. 9ECh. 6.8 - Prove that a 22 matrix A is reducible if and only...Ch. 6.8 - Prove the Forbenius theorem in the case where A is...Ch. 6.8 - Prob. 12ECh. 6.8 - Let A be an nn positive stochastic matrix with...Ch. 6.8 - Would the results of parts (c) and (d) in Exercise...Ch. 6.8 - A management student received fellowship offers...Ch. 6 - The top matrix on the menu is the diagonal matrix...Ch. 6 - Prob. 2ECh. 6 - Prob. 3ECh. 6 - Prob. 4ECh. 6 - Prob. 5ECh. 6 - Prob. 6ECh. 6 - Prob. 7ECh. 6 - The last item on the eigshow menu will generate a...Ch. 6 - Prob. 9ECh. 6 - Prob. 10ECh. 6 - Prob. 11ECh. 6 - Consider the matrices A=(5 33 5) and B=(5 335)...Ch. 6 - Prob. 13ECh. 6 - Prob. 14ECh. 6 - Prob. 15ECh. 6 - Prob. 16ECh. 6 - Prob. 17ECh. 6 - Prob. 18ECh. 6 - Prob. 19ECh. 6 - Let A be a nonsingular 22 matrix with singular...Ch. 6 - Set A=[1,1;0.5,0.5] and use MATLAB to verify each...Ch. 6 - Prob. 22ECh. 6 - Prob. 23ECh. 6 - Prob. 24ECh. 6 - Prob. 25ECh. 6 - If A is an nn matrix whose eigenvalues are all...Ch. 6 - If A is nn matrix, then A and AT have the same...Ch. 6 - If A and B are similar matrices, then they have...Ch. 6 - If A and B are nn matrices with the same...Ch. 6 - If A has eigenvalues of multiplicity greater than...Ch. 6 - If A is a 44 matrix of rank 3 and =0 is an...Ch. 6 - If A is a 44 matrix of rank 1 and =0 is an...Ch. 6 - The rank of an nn matrix A is equal to the number...Ch. 6 - The rank of an mn matrix A is equal to the number...Ch. 6 - If A is Hermitian and c is a complex scalar, then...Ch. 6 - If an nn matrix A has Schur decomposition A=UTUH,...Ch. 6 - If A is normal, but not Hermitian, then A must...Ch. 6 - Prob. 13CTACh. 6 - Prob. 14CTACh. 6 - If A is symmetric, then eA is symmetric positive...Ch. 6 - Let A=(10011 112 2) Find the eigenvalues of A. For...Ch. 6 - Let A be a 44 matrix with real entries that has...Ch. 6 - Let A be a nonsingular nn matrix and let be an...Ch. 6 - Show that if A is a matrix of the form...Ch. 6 - Let A=(4222 10 102 10 14) Without computing the...Ch. 6 - Prob. 6CTBCh. 6 - Prob. 7CTBCh. 6 - Let A be a 44 real symmetric matrix with...Ch. 6 - Let {u1,u2} be an orthonormal basis for 2 and...Ch. 6 - Let A be a 55 nonsymmetric matrix with rank equal...Ch. 6 - Let A and B be nn matrices. If A is real and...Ch. 6 - Let A be a matrix whose singular value...
Additional Math Textbook Solutions
Find more solutions based on key concepts
If the run of a line is 10 and its rise is 6; then its slope is ______.
Elementary & Intermediate Algebra
In each of Exercises 21–30, draw a linear graph to represent the given information. Be sure to label and number...
Elementary Algebra: Concepts and Applications (10th Edition)
Factor each expression completely. 41.28y2+43y48
High School Math 2012 Common-core Algebra 1 Practice And Problem Solvingworkbook Grade 8/9
For each hour of class time, how many hours outside of class are recommended for studying and doing homework?
Elementary Algebra For College Students (10th Edition)
153. A rain gutter is made from sheets of aluminum that are 20 inches wide. As shown in the figure, the edges ...
College Algebra (7th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- A local bank has two branches in a cty: one in the business center of the city and another-in a residential area. The bank's operations manager wants to Improve front-office employee scheduling during the lunch hour (12:00-13:00) period. The manager starts with studying the customer walting times at the two branches and collects data for two groups of 35 customers at each branch. Customers at the business-center branch walted on average 3.8 minutes, whle those at the residential branch waited 4.4 minutes on average, Assume that the population standard deviations are 1.8 (business-center branch) and 2.5 tresidential branch). a. Considering the real-ife problem, determine the point estimate of the unknown quantity that needs to be estimated. (Round to two decimal places.) b. Determine the critical value needed to compute a Bs confidence interval (Round to two decimal places.) c. Compute the confidence interval the operations manager would be interested in computing using the confidence…arrow_forwardA private lake sells boating memberships and currently has 600 members. During the application process the potential members are asked which recreational activity they do the most. Their choices are fishing, skiing, boarding, swimming, or tubing. The lake manager chooses clients according to their interests to maximize the use of all areas of the lake. Every month, the lake rangers randomly sample the boats on the lake and categorize them according to the activity they are doing. The lake manager performs a chi-square goodness-of-fit test using the following null hypothesis to see whether their samples differ significantly from what the original applications claim. H0:pfish=0.26,pski=0.21,pboard=0.30,pswim=0.12,ptube=0.11 In order to meet the conditions for independence and large counts for a chi-square goodness-of-fit test, which of the following represents all possible sizes of the monthly samples? n≥30 lowercase n is greater than or equal to 30 A 30≤n≤50 30 is less than…arrow_forwardA private lake sells boating memberships and currently has 600 members. During the application process the potential members are asked which recreational activity they do the most. Their choices are fishing, skiing, boarding, swimming, or tubing. The lake manager chooses clients according to their interests to maximize the use of all areas of the lake. Every month, the lake rangers randomly sample the boats on the lake and categorize them according to the activity they are doing. The lake manager performs a chi-square goodness-of-fit test using the following null hypothesis to see whether their samples differ significantly from what the original applications claim. Ho Pfish =0.26, p,ki = 0.21, proard 0.21, Phoard 0.30, Psuim 0.12, Prube 0.11 In order to meet the conditions for independence and large counts for a chi-square goodness-of-fit test, which of the following represents all possible sizes of the monthly samples? A n> 30 B. 30 n< 50 46arrow_forwardYou are given five different data points, p1, p2, p3, p4, p5. Use the similarity matrix in Figure 2 to perform complete link hierarchical clustering. a) For each of the four merging steps, show the updated proximity matrix of the clusters. b) Visualize the clustering solution using a dendrogram. The dendrogram should clearly show the order in which the points are merged, and the distances between the clusters merged. c) Which clusters are formed we need to have two clusters? Note: while the proximity table that is given to you has similarities, you can easily transform them into distances if you compute d = 1 - s. p1 p2 p3 p4 p5 p1 1.00 0.10 0.41 0.55 0.47 0.35 0.98 Figure 2: Proximity matrix (similarity) p2 0.10 H 1.00 0.64 p3 0.41 0.64 1.00 0.44 0.85 L p4 0.55 0.47 0.44 p5 0.35 0.98 0.85 0.76 1.00 1.00 0.76arrow_forwardA city planner wants to work with community leaders to develop a system of walker-friendly paths between the city's five parks. Since cost is an issue, the planner collects data on the cost of each park-to-park route. The planner uses the Nearest Neighbor method to determine an estimate of a least cost system of sidewalks that would allow a walker to visit each park once and return to the park where the walker has parked his/her car. The weighted graph below shows the cost of each possible path in thousands of dollars. .236' 239 124. 225 131 163 A 168 109 120 11 E Starting and ending at vertex A, what is the minimum cost to construct paths as estimated by the Nearest-Neighbor method? (note: The values on the graph are thousands of dollars, so you will need to append three zeros to your response. For example, if you get a minimum cost of 123, you would enter 123000.)arrow_forwardResearchers conducted a study to find out if there is a difference in the use of online-learning by different age groups. Randomly selected participants were divided into two age groups. In the 16 to 29-year-old group, 7% of the 628 surveyed use online-learning, while 11% of the 2,309 participants 30 years old and older use online learning. (Set 1 for 16-29 year old group; Set 2 for 30 years old and older). Find X2.arrow_forwardSlamet is a young entrepreneur who started his business by opening 5 “Bebek Mas Slamet” restaurants in different locations, namely in Blok S, Blok M, Blok A, Senayan, and Depok areas. Because it is still in its infancy, Slamet still frequently observes data on the number of sales portions of Fried Duck which is the mainstay of the restaurant "Bebek Mas Slamet". The following data shows the total sales of Bebek Goreng for the last two days for the time of day, afternoon, and evening that Slamet is observing from the four restaurant locations Penjualan Siang Sore Malam Blok S 40 41 30 32 43 43 Blok M 36 40 35 33 45 46 Blok A 40 45 39 48 46 50 Senayan 34 37 36 35 45 44 Depok 36 40 37 34 47 48 Help Slamet to analyze the data on the sales of fried duck over the past two days by answering some of the questions in this question. Some of the results of the calculation of the sum of squares…arrow_forwardConsider there are only two computer companies in a country. The companies are named “Dude” and “Imac”. Each year, company Dude keeps 1/5th of its customers, while the rest switch to Imac. Each year, Imac keeps 1/3rd of its customers, while the rest switch to Dude. If in 2002, Dude has 1/6th of the market and Imac has 5/6th of the market, what is the distribution of the market share between the two companies in 2003. (Hint: you can cast this as a matrix multiplication problem)arrow_forwardIllustrate an ill condition system with example.arrow_forwardOtitis media, or middle ear infection, is initially treated with an antibiotic. Researchers have compared two antibiotics, A and B, for their cost effectiveness. A is inexpensive, safe, and effective. B is also safe. However, it is considerably more expensive and it is generally more effective. Use the tree diagram to the right (where the costs are estimated as the total cost of medication, office visit, ear check, and hours of lost work) to answer the following. a. Find the expected cost of using each antibiotic to treat a middle ear infection. A tree diagram has a root that splits into 2 branches labeled A and B. Primary branch A splits into 2 secondary branches labeled 0.80 Cure 59.30 dollars and 0.20 No cure 96.15 dollars. Primary branch B splits into two secondary branches labeled 0.90 Cure 69.15 dollars and 0.10 No cure 106.00 dollars.0.800.200.900.10 b. To minimize the total expected cost, which antibiotic should be chosen? a. The expected cost of…arrow_forwardOtitis media, or middle ear infection, is initially treated with an antibiotic. Researchers have compared two antibiotics, A and B, for their cost effectiveness. A is inexpensive, safe, and effective. B is also safe. However, it is considerably more expensive and it is generally more effective. Use the tree diagram to the right (where the costs are estimated as the total cost of medication, office visit, ear check, and hours of lost work) to answer the following. a. Find the expected cost of using each antibiotic to treat a middle ear infection. b. To minimize the total expected cost, which antibiotic should be chosen? a. The expected cost of using antibiotic A is S (Round to the nearest cent as needed.) D w an example Get more help ww O Search e ( *** O 19 'C Clear all 0.70 Cure $59.30 A 0.30 No cure $96.15 0.85, Care $69.15 B 0.15 No cure $106.00 Check answer 2:17 PM 12/15/2022arrow_forwardOtitis media, or middle ear infection, is initially treated with an antibiotic. Researchers have compared two antibiotics, A and B, for their cost effectiveness. A is inexpensive, safe, and effective. B is also safe. However, it is considerably more expensive and it is generally more effective. Use the tree diagram to the right (where the costs are estimated as the total cost of medication, office visit, ear check, and hours of lost work) to answer the following. a. Find the expected cost of using each antibiotic to treat a middle ear infection. 0.75 , Cure $59.30 A 0.25 No cure $96.15 0.85, Cure $69.15 No cure $106.00 0.15 b. To minimize the total expected cost, which antibiotic should be chosen? a. The expected cost of using antibiotic A is $ (Round to the nearest cent as needed.)arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Orthogonality in Inner Product Spaces; Author: Study Force;https://www.youtube.com/watch?v=RzIx_rRo9m0;License: Standard YouTube License, CC-BY
Abstract Algebra: The definition of a Group; Author: Socratica;https://www.youtube.com/watch?v=QudbrUcVPxk;License: Standard Youtube License