Question 4 (a) The following matrices represent linear maps on R² with respect to an orthonormal basis: = [1/√5 2/√5 [2/√5 -1/√5] " [1/√5 2/√5] A = B = [2/√5 1/√5] 1 C = D = = = [ 1/3/5 2/35] 1/√5 2/√5 -2/√5 1/√5' For each of the matrices A, B, C, D, state whether it represents a self-adjoint linear map, an orthogonal linear map, both, or neither. (b) For the quadratic form q(x, y, z) = y² + 2xy +2yz over R, write down a linear change of variables to u, v, w such that q in these terms is in canonical form for Sylvester's Law of Inertia. [6] [4]
Question 4 (a) The following matrices represent linear maps on R² with respect to an orthonormal basis: = [1/√5 2/√5 [2/√5 -1/√5] " [1/√5 2/√5] A = B = [2/√5 1/√5] 1 C = D = = = [ 1/3/5 2/35] 1/√5 2/√5 -2/√5 1/√5' For each of the matrices A, B, C, D, state whether it represents a self-adjoint linear map, an orthogonal linear map, both, or neither. (b) For the quadratic form q(x, y, z) = y² + 2xy +2yz over R, write down a linear change of variables to u, v, w such that q in these terms is in canonical form for Sylvester's Law of Inertia. [6] [4]
Algebra & Trigonometry with Analytic Geometry
13th Edition
ISBN:9781133382119
Author:Swokowski
Publisher:Swokowski
Chapter9: Systems Of Equations And Inequalities
Section9.8: Determinants
Problem 8E
Related questions
Question
![Question 4
(a) The following matrices represent linear maps on R² with respect to an
orthonormal basis:
=
[1/√5 2/√5
[2/√5 -1/√5]
"
[1/√5 2/√5]
A =
B =
[2/√5 1/√5] 1
C =
D =
=
=
[ 1/3/5 2/35]
1/√5 2/√5
-2/√5 1/√5'
For each of the matrices A, B, C, D, state whether it represents a self-adjoint
linear map, an orthogonal linear map, both, or neither.
(b) For the quadratic form
q(x, y, z) = y² + 2xy +2yz
over R, write down a linear change of variables to u, v, w such that q in these
terms is in canonical form for Sylvester's Law of Inertia.
[6]
[4]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F5643e7c1-8735-4620-abde-7dd6ac8a3e5f%2F881b5669-7de8-4b35-b87e-7f84a41a0938%2Fou9n8c_processed.png&w=3840&q=75)
Transcribed Image Text:Question 4
(a) The following matrices represent linear maps on R² with respect to an
orthonormal basis:
=
[1/√5 2/√5
[2/√5 -1/√5]
"
[1/√5 2/√5]
A =
B =
[2/√5 1/√5] 1
C =
D =
=
=
[ 1/3/5 2/35]
1/√5 2/√5
-2/√5 1/√5'
For each of the matrices A, B, C, D, state whether it represents a self-adjoint
linear map, an orthogonal linear map, both, or neither.
(b) For the quadratic form
q(x, y, z) = y² + 2xy +2yz
over R, write down a linear change of variables to u, v, w such that q in these
terms is in canonical form for Sylvester's Law of Inertia.
[6]
[4]
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
![Elementary Linear Algebra (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305658004/9781305658004_smallCoverImage.gif)
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:
9781305658004
Author:
Ron Larson
Publisher:
Cengage Learning
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
![Elementary Linear Algebra (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305658004/9781305658004_smallCoverImage.gif)
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:
9781305658004
Author:
Ron Larson
Publisher:
Cengage Learning
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![College Algebra](https://www.bartleby.com/isbn_cover_images/9781938168383/9781938168383_smallCoverImage.gif)
![Algebra for College Students](https://www.bartleby.com/isbn_cover_images/9781285195780/9781285195780_smallCoverImage.gif)
Algebra for College Students
Algebra
ISBN:
9781285195780
Author:
Jerome E. Kaufmann, Karen L. Schwitters
Publisher:
Cengage Learning