Exercise 14.3. Let p be a prime number, and let ø : Z[x] → Zp[x] be the ring homomorphism defined by n n (Σ a¿x²) := Σ ārx², Vao,. i=0 i=0 ..., an EZ. Here ā¿ € Zp satisfies p | ai – āi. Show that ker(o) is a principal prime ideal.
Exercise 14.3. Let p be a prime number, and let ø : Z[x] → Zp[x] be the ring homomorphism defined by n n (Σ a¿x²) := Σ ārx², Vao,. i=0 i=0 ..., an EZ. Here ā¿ € Zp satisfies p | ai – āi. Show that ker(o) is a principal prime ideal.
Elements Of Modern Algebra
8th Edition
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Gilbert, Linda, Jimmie
Chapter6: More On Rings
Section6.4: Maximal Ideals (optional)
Problem 3E
Question
![Exercise 14.3. Let p be a prime number, and let ø : Z[x] → Zp[x] be the ring homomorphism
defined by
n
n
(Σ a¿x²) := Σ ārx², Vao,.
i=0
i=0
..., an EZ.
Here ā¿ € Zp satisfies p | ai – āi. Show that ker(o) is a principal prime ideal.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ff2e948f6-fd6f-485f-942e-c931230f8579%2Fa3f92daa-981b-4d06-a345-184f8f0d5934%2Fb6gu43y_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Exercise 14.3. Let p be a prime number, and let ø : Z[x] → Zp[x] be the ring homomorphism
defined by
n
n
(Σ a¿x²) := Σ ārx², Vao,.
i=0
i=0
..., an EZ.
Here ā¿ € Zp satisfies p | ai – āi. Show that ker(o) is a principal prime ideal.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images

Recommended textbooks for you

Elements Of Modern Algebra
Algebra
ISBN:
9781285463230
Author:
Gilbert, Linda, Jimmie
Publisher:
Cengage Learning,

Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning

Elements Of Modern Algebra
Algebra
ISBN:
9781285463230
Author:
Gilbert, Linda, Jimmie
Publisher:
Cengage Learning,

Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning