Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf
Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf
9th Edition
ISBN: 9781259989452
Author: Hayt
Publisher: Mcgraw Hill Publishers
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 6, Problem 50E

For the circuit of Fig. 6.62, calculate the differential input voltage and the input bias current if the op amp is a(n) (a) μA741; (b) LF411; (c) AD549K.

Chapter 6, Problem 50E, For the circuit of Fig. 6.62, calculate the differential input voltage and the input bias current if

(a)

Expert Solution
Check Mark
To determine

Find the differential input voltage and input bias current of op amp.

Answer to Problem 50E

The differential voltage vd of μA741 is 1.548×105V and input bias current id is 7.743×1012A.

Explanation of Solution

Given Data:

Differential op amp is μA741.

Calculation:

The redrawn circuit of op amp is shown in Figure 1 as follows:

Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf, Chapter 6, Problem 50E

Refer to the redrawn Figure 1:

The expression for the nodal analysis at the nodal voltage vd is:

vd+450mVR1+vd+450mVvoutRf+vdRi=0 (1)

Here,

vd is the differential voltage at node terminal of input across op amp,

vin is the applied input across op amp,

R1 is the input resistance of op amp,

Rf is the feedback resistance of op amp and

vout is the output voltage of μA741 op amp.

The expression for nodal analysis at nodal voltage vout is:

vout(vd+450mV)Rf+voutAvdR0=0 (2)

Here,

A is the open loop gain of op amp and

R0 is the output resistance of op amp.

The expression for the bias input current of differential op amp is:

vd=(id×Ri) (3)

Here,

id is the bias input current of practical op amp.

Simplify the equation (1) for vd.

vd+450mVR1+vd+450mVvoutRf+vdRi=0vdR1vdRfvdRivoutRf+450mVRf=450mVR1vd(1R1+1Rf+1Ri)voutRf+450mVRf=450mVR1

vd(RiRf+R1Ri+R1RfR1RfRi)=450mVR1+voutRf450mVRf (4)

Refer to the TABLE 6.3 in the textbook.

Substitute 1.4kΩ for Rf, 250Ω for R1 and 2MΩ for Ri in the equation (4).

vd(2MΩ×1.4kΩ+250Ω×2MΩ+250Ω×1.4kΩ2MΩ×1.4kΩ×250Ω)=450mV250Ω+vout1.4kΩ450mV1.4kΩvd(2800MΩ+500 MΩ+0.35MΩ700000MΩ)=450×103V250Ω+vout1.4×103Ω3.214×104vd(4.714×103)=1.8×103+7.143×104vout3.214×104

Rearrange for vout.

vd(4.714×103)=1.8×103+7.143×104vout3.214×104vd(4.714×103)=7.143×104vout2.121×1037.143×104vout=2.121×103vd(4.714×103)vout=2.121×103vd(4.714×103)7.143×104

vout=2.9696.599vd (5)

Substitute 2.9696.599vd for vout from equation (5) in equation (2).

(2.9696.599vd)(vd+450mV)1.4kΩ+(2.9696.599vd)A×vd75 Ω=06.599vd1.4kΩ+vd1.4kΩ6.599vd75 ΩA×vd75 Ω+2.9691.4×103Ω450×103V1.4×103Ω+2.96975 Ω=0vd(6.5991.4kΩ+11.4kΩ6.59975 ΩA75 Ω)+2.121×1033.214×104+0.0395=0

vd(4.713×103+7.14×1040.0879A75 Ω)+0.0413=0 (6)

Substitute 2×105V/V for A in the equation (6).

vd(4.713×103+7.14×1040.08792×105V/V75 Ω)+0.0413=0vd(2666.758)+0.0413=0vd=0.04132666.758Vvd=1.548×105V

Substitute 1.548×105V for vd in equation (3).

1.548×105V=(id×2MΩ)1.548×105V=(id×2×106Ω)                {1MΩ=1×106Ω}

Rearrange for id.

id=7.743×1012A

Conclusion:

Thus, the differential voltage vd of μA741 is 1.548×105V and input bias current id is 7.743×1012A.

(b)

Expert Solution
Check Mark
To determine

Find the differential input voltage and input bias current of op amp.

Answer to Problem 50E

The differential voltage vd of LF411 is 1.485×105V and input bias current id is 1.485×1017A.

Explanation of Solution

Given Data:

Differential op amp is LF411.

Calculation:

Refer to the TABLE 6.3 in the textbook.

Substitute 1.4kΩ for Rf, 250Ω for R1 and 1TΩ for Ri in the equation (4).

vd(1TΩ×1.4kΩ+250Ω×1TΩ+250Ω×1.4kΩ1TΩ×1.4kΩ×250Ω)=450mV250Ω+vout1.4kΩ450mV1.4kΩvd(1400TΩ+250 TΩ+0.00035TΩ350000TΩ)=450×103V250Ω+vout1.4×103Ω3.214×104vd(4.714×103)=1.8×103+7.143×104vout3.214×104

Rearrange for vout.

vd(4.714×103)=7.143×104vout2.121×1037.143×104vout=2.121×103vd(4.714×103)vout=2.121×103vd(4.714×103)7.143×104

vout=2.9696.599vd

Substitute 2.9696.599vd for vout in equation (2).

(2.9696.599vd)(vd+450mV)1.4kΩ+(2.9696.599vd)A×vd1 Ω=06.599vd1.4kΩ+vd1.4kΩ6.599vd1 ΩA×vdΩ+2.9691.4×103Ω450×103V1.4×103Ω+2.9691 Ω=0vd(6.5991.4kΩ+11.4kΩ6.599ΩAΩ)+2.121×1033.214×104+2.969=0

vd(4.713×103+7.14×1046.599A)+2.970=0 (7)

Substitute 2×105V/V for A in the equation (7).

vd(4.713×103+7.14×1046.5992×105)+2.970=0vd(200006.603)+0.0349=0vd=2.970200006.603Vvd=1.485×105V

Substitute 1.485×105V for vd in equation (3).

1.485×105V=(id×1TΩ)1.485×105V=(id×1×1012Ω)                {1TΩ=1×1012Ω}

Rearrange for id.

id=1.485×1017A

Conclusion:

Thus, the differential voltage vd of LF411 is 1.485×105V and input bias current id is 1.485×1017A.

(c)

Expert Solution
Check Mark
To determine

Find the differential input voltage and input bias current of AD549K op amp.

Answer to Problem 50E

The differential voltage vd of AD549K is 1.99×107V and input bias current id is 1.996×1020A.

Explanation of Solution

Given Data:

Differential op amp is AD549K.

Calculation:

Refer to the TABLE 6.3 in the textbook.

Substitute 1.4kΩ for Rf, 250Ω for R1 and 10TΩ for Ri in the equation (4).

vd(10TΩ×1.4kΩ+250Ω×10TΩ+250Ω×1.4kΩ10TΩ×1.4kΩ×250Ω)=450mV250Ω+vout1.4kΩ450mV1.4kΩvd(14000TΩ+2500 TΩ+0.00035TΩ3500000TΩ)=450×103V250Ω+vout1.4×103Ω3.214×104vd(4.714×103)=1.8×103+7.143×104vout3.214×104

Rearrange for vout.

vd(4.714×103)=7.143×104vout2.121×1037.143×104vout=2.121×103vd(4.714×103)vout=2.121×103vd(4.714×103)7.143×104

vout=2.9696.599vd

Substitute 2.9696.599vd for vout in equation (2).

(2.9696.599vd)(vd+450mV)1.4kΩ+(2.9696.599vdV)A×vd15 Ω=06.599vd1.4kΩ+vd1.4kΩ6.599vd15 ΩA×vd15 Ω+2.9691.4×103Ω450×103V1.4×103Ω+2.96915 Ω=0vd(6.5991.4kΩ+11.4kΩ6.59915 ΩA15 Ω)+2.121×1033.214×104+0.198=0

vd(4.713×103+7.14×1040.439A)+0.1997=0 (8)

Substitute 106V/V for A in equation (8).

vd(4.713×103+7.14×1040.439106)+0.1997=0vd(1000000.443)+0.1997=0vd=0.19971000000.443Vvd=1.99×107V

Substitute 1.99×107V for vd in equation (3).

1.99×107V=(id×10TΩ)1.99×107V=(id×10×1012Ω)                {1TΩ=1×1012Ω}

Rearrange for id,

id=1.996×1020A

Conclusion:

Thus, the differential voltage vd of AD549K is 1.99×107V and input bias current id is 1.996×1020A.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Not: I need also pictures cct diagram and result Question: I need a MATLAB/Simulink model for a Boost Converter used to charge a battery, powered by a PV solar panel. The model should include: 1. A PV solar panel as the input power source. 2. A Boost Converter circuit for voltage regulation. 3. A battery charging system. 4. Simulation results showing voltage, current, and efficiency of the system. Important: Please provide: 1. The Simulink file of the model. 2. Clear screenshots showing the circuit connections in MATLAB/Simulink. 3. Screenshots of the simulation results (voltage, current, efficiency, etc.).
A Butterworth low-pass filter has the following specification:    max = 0.5 dB,            min =30dB     p = 750rad/s    and     s = 1750rad/si) Determine the TF for Butterworth LP filterii) Q of the polesiii) Determine the half-power frequency 0iv) Determine the actual attenuation at the edge of the pass-band and the edge of the stop-band, (p) and (s).
Find the inverse of Laplace transform s-1 5+5 , Re[s]>-3 (s+1)(s-3) s+5 a) s²(s+3) b) c) (S-1)(s+1)2 d) s+5 , i) Re[s]> 3 ii) Re[s]-1 ii) Re[s] 1 (s-1)(s-2)(s-3)' , i) Re[s]> 3 ii) Re[s]<1 iii) I

Chapter 6 Solutions

Loose Leaf for Engineering Circuit Analysis Format: Loose-leaf

Ch. 6 - For the circuit in Fig. 6.40, find the values of...Ch. 6 - (a) Design a circuit which converts a voltage...Ch. 6 - Prob. 6ECh. 6 - For the circuit of Fig. 6.40, R1 = RL = 50 ....Ch. 6 - Prob. 8ECh. 6 - (a) Design a circuit using only a single op amp...Ch. 6 - Prob. 11ECh. 6 - Determine the output voltage v0 and the current...Ch. 6 - Prob. 13ECh. 6 - Prob. 14ECh. 6 - Prob. 15ECh. 6 - Prob. 16ECh. 6 - Consider the amplifier circuit shown in Fig. 6.46....Ch. 6 - Prob. 18ECh. 6 - Prob. 19ECh. 6 - Prob. 20ECh. 6 - Referring to Fig. 6.49, sketch vout as a function...Ch. 6 - Repeat Exercise 21 using a parameter sweep in...Ch. 6 - Obtain an expression for vout as labeled in the...Ch. 6 - Prob. 24ECh. 6 - Prob. 25ECh. 6 - Prob. 26ECh. 6 - Prob. 27ECh. 6 - Prob. 28ECh. 6 - Prob. 29ECh. 6 - Prob. 30ECh. 6 - Prob. 31ECh. 6 - Determine the value of Vout for the circuit in...Ch. 6 - Calculate V0 for the circuit in Fig. 6.55. FIGURE...Ch. 6 - Prob. 34ECh. 6 - The temperature alarm circuit in Fig. 6.56...Ch. 6 - Prob. 36ECh. 6 - For the circuit depicted in Fig. 6.57, sketch the...Ch. 6 - For the circuit depicted in Fig. 6.58, (a) sketch...Ch. 6 - For the circuit depicted in Fig. 6.59, sketch the...Ch. 6 - In digital logic applications, a +5 V signal...Ch. 6 - Using the temperature sensor in the circuit in...Ch. 6 - Examine the comparator Schmitt trigger circuit in...Ch. 6 - Design the circuit values for the single supply...Ch. 6 - For the instrumentation amplifier shown in Fig....Ch. 6 - A common application for instrumentation...Ch. 6 - (a) Employ the parameters listed in Table 6.3 for...Ch. 6 - Prob. 49ECh. 6 - For the circuit of Fig. 6.62, calculate the...Ch. 6 - Prob. 51ECh. 6 - FIGURE 6.63 (a) For the circuit of Fig. 6.63, if...Ch. 6 - The difference amplifier circuit in Fig. 6.32 has...Ch. 6 - Prob. 55ECh. 6 - Prob. 56ECh. 6 - Prob. 57ECh. 6 - Prob. 58ECh. 6 - Prob. 59ECh. 6 - Prob. 60ECh. 6 - A fountain outside a certain office building is...Ch. 6 - For the circuit of Fig. 6.44, let all resistor...

Additional Engineering Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Text book image
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Text book image
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Text book image
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Current Divider Rule; Author: Neso Academy;https://www.youtube.com/watch?v=hRU1mKWUehY;License: Standard YouTube License, CC-BY